1,985 research outputs found

    Globally enhanced calcification across the coccolithophore Gephyrocapsa complex during the mid-Brunhes interval

    Get PDF
    Evolutionary or adaptative changes in Noelaerhabdaceae coccolithophores occurred in parallel with major changes in carbonate export and burial during scenarios of low orbital eccentricity, with a ∼400 kyr recurrence, during the Pleistocene. Coeval with these conditions of enhanced proliferation, here we report that the calcification of specimens was enhanced at a global scale and across multiple species or morphotypes within the Gephyrocapsa complex during the Mid-Brunhes (MB) interval. This acme of increased production of organic and inorganic carbon by Gephyrocapsa, suggests that such global changes may originate from a common driver. Increased seawater alkalinity, with an appropriately long residence time, is proposed as environmental trigger on the selection of a wide variety of highly calcified and prolific Gephyrocapsa taxa. This new perspective highlights the role of orbital forcing in phytoplankton evolution or adaptation, via a global environmental driver in the form of seawater carbon chemistry. Our results fit with earlier proposals appealing for an intensified biological pump and respiration dissolution during this interval. We hypothesize that the Gephyrocapsa acme may play a double-edged role, by increasing shallow respiration dissolution rates, limiting the removal of alkalinity by burial, which may help to recycle alkalinity and maintain constant levels at the ∼400 kyr scale. This idea suggests the potential capacity of the Noelaerhabdaceae coccolithophore acmes to modify the typical behaviour of carbonate compensation in the ocean and that the changes in coccolithophore calcification may be indicative of changes in ocean carbonate chemistry and the operation of the global carbon cycle in the past

    Impact of the 2003 to 2018 Population Salt Intake Reduction Program in England A Modeling Study

    Get PDF
    The United Kingdom was among the first countries to introduce a salt reduction program in 2003 to reduce cardiovascular disease (CVD) incidence risk. Despite its initial success, the program has stalled recently and is yet to achieve national and international targets. We used age- and sex-stratified salt intake of 19 to 64 years old participants in the National Diet and Nutrition Surveys 2000 to 2018 and a multistate life table model to assess the effects of the voluntary dietary salt reduction program on premature CVD, quality-adjusted survival, and health care and social care costs in England. The program reduced population-level salt intake from 9.38 grams/day per adult (SE, 0.16) in 2000 to 8.38 grams/day per adult (SE, 0.17) in 2018. Compared with a scenario of persistent 2000 levels, assuming that the population-level salt intake is maintained at 2018 values, by 2050, the program is projected to avoid 83 140 (95% CI, 73 710–84 520) premature ischemic heart disease (IHD) cases and 110 730 (95% CI, 98 390–112 260) premature strokes, generating 542 850 (95% CI, 529 020–556 850) extra quality-adjusted life-years and £1640 million (95% CI, £1570–£1660) health care cost savings for the adult population of England. We also projected the gains of achieving the World Health Organization target of 5 grams/day per adult by 2030, which by 2050 would avert further 87 870 (95% CI, 82 050–88 470) premature IHD cases, 126 010 (95% CI, 118 600–126 460) premature strokes and achieve £1260 million (95% CI, £1180–£1260) extra health care savings compared with maintaining 2018 levels. Strengthening the salt reduction program to achieve further reductions in population salt intake and CVD burden should be a high priority

    HReMAS: Hybrid Real-time Musical Alignment System

    Get PDF
    [EN] This paper presents a real-time audio-to-score alignment system for musical applications. The aim of these systems is to synchronize a live musical performance with its symbolic representation in a music sheet. We have used as a base our previous real-time alignment system by enhancing it with a traceback stage, a stage used in offline alignment to improve the accuracy of the aligned note. This stage introduces some delay, what forces to assume a trade-off between output delay and alignment accuracy that must be considered in the design of this type of hybrid techniques. We have also improved our former system to execute faster in order to minimize this delay. Other interesting improvements, like identification of silence frames, have also been incorporated to our proposed system.This work has been supported by the "Ministerio de Economia y Competitividad" of Spain and FEDER under Projects TEC2015-67387-C4-{1,2,3}-R.Cabañas-Molero, P.; Cortina-Parajón, R.; Combarro, EF.; Alonso-Jordá, P.; Bris-Peñalver, FJ. (2019). HReMAS: Hybrid Real-time Musical Alignment System. The Journal of Supercomputing. 75(3):1001-1013. https://doi.org/10.1007/s11227-018-2265-1S10011013753Alonso P, Cortina R, Rodríguez-Serrano FJ, Vera-Candeas P, Alonso-González M, Ranilla J (2017) Parallel online time warping for real-time audio-to-score alignment in multi-core systems. J Supercomput 73(1):126–138Alonso P, Vera-Candeas P, Cortina R, Ranilla J (2017) An efficient musical accompaniment parallel system for mobile devices. J Supercomput 73(1):343–353Arzt A (2016) Flexible and robust music tracking. Ph.D. thesis, Johannes Kepler University Linz, Linz, ÖsterreichArzt A, Widmer G, Dixon S (2008) Automatic page turning for musicians via real-time machine listening. In: Proceedings of the 18th European Conference on Artificial Intelligence (ECAI), Amsterdam, pp 241–245Carabias-Orti J, Rodríguez-Serrano F, Vera-Candeas P, Ruiz-Reyes N, Cañadas-Quesada F (2015) An audio to score alignment framework using spectral factorization and dynamic time warping. In: Proceedings of ISMIR, pp 742–748Cont A (2006) Realtime audio to score alignment for polyphonic music instruments, using sparse non-negative constraints and hierarchical HMMs. In: 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol 5. pp V–VCont A, Schwarz D, Schnell N, Raphael C (2007) Evaluation of real-time audio-to-score alignment. In: International Symposium on Music Information Retrieval (ISMIR), ViennaDannenberg RB, Raphael C (2006) Music score alignment and computer accompaniment. Commun ACM 49(8):38–43Devaney J, Ellis D (2009) Handling asynchrony in audio-score alignment. In: Proceedings of the International Computer Music Conference Computer Music Association. pp 29–32Dixon S (2005) An on-line time warping algorithm for tracking musical performances. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). pp 1727–1728Duan Z, Pardo B (2011) Soundprism: an online system for score-informed source separation of music audio. IEEE J Sel Top Signal Process 5(6):1205–1215Ewert S, Muller M, Grosche P (2009) High resolution audio synchronization using chroma onset features. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2009 (ICASSP 2009). pp 1869–1872Hu N, Dannenberg R, Tzanetakis G (2003) Polyphonic audio matching and alignment for music retrieval. In: 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. pp 185–188Kaprykowsky H, Rodet X (2006) Globally optimal short-time dynamic time warping, application to score to audio alignment. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, vol 5. pp. V–VLi B, Duan Z (2016) An approach to score following for piano performances with the sustained effect. IEEE/ACM Trans Audio Speech Lang Process 24(12):2425–2438Miron M, Carabias-Orti JJ, Bosch JJ, Gómez E, Janer J (2016) Score-informed source separation for multichannel orchestral recordings. J Electr Comput Eng 2016(8363507):1–19Muñoz-Montoro A, Cabañas-Molero P, Bris-Peñalver F, Combarro E, Cortina R, Alonso P (2017) Discovering the composition of audio files by audio-to-midi alignment. In: Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering. pp 1522–1529Orio N, Schwarz D (2001) Alignment of monophonic and polyphonic music to a score. In: Proceedings of the International Computer Music Conference (ICMC), pp 155–158Pätynen J, Pulkki V, Lokki T (2008) Anechoic recording system for symphony orchestra. Acta Acust United Acust 94(6):856–865Raphael C (2010) Music plus one and machine learning. In: Proceedings of the 27th International Conference on Machine Learning (ICML), pp 21–28Rodriguez-Serrano FJ, Carabias-Orti JJ, Vera-Candeas P, Martinez-Munoz D (2016) Tempo driven audio-to-score alignment using spectral decomposition and online dynamic time warping. ACM Trans Intell Syst Technol 8(2):22:1–22:2

    First report of cytogenetic studies in Spanish breed horses

    Get PDF
    Exterior, Neptune Fountain, detai

    Parallel Online Time Warping for Real-Time Audio-to-Score Alignment in Multi-core Systems

    Full text link
    [EN] The Audio-to-Score framework consists of two separate stages: pre- processing and alignment. The alignment is commonly solved through offline Dynamic Time Warping (DTW), which is a method to find the path over the distortion matrix with the minimum cost to determine the relation between the performance and the musical score times. In this work we propose a par- allel online DTW solution based on a client-server architecture. The current version of the application has been implemented for multi-core architectures (x86, x64 and ARM), thus covering either powerful systems or mobile devices. An extensive experimentation has been conducted in order to validate the software. The experiments also show that our framework allows to achieve a good score alignment within the real-time window by using parallel computing techniques.This work has been partially supported by Spanish Ministry of Science and Innovation and FEDER under Projects TEC2012-38142-C04-01, TEC2012-38142-C04-03, TEC2012-38142-C04-04, TEC2015-67387-C4-1-R, TEC2015-67387-C4-3-R, TEC2015-67387-C4-4-R, the European Union FEDER (CAPAP-H5 network TIN2014-53522-REDT), and the Generalitat Valenciana under Grant PROMETEOII/2014/003.Alonso-Jordá, P.; Cortina, R.; Rodríguez-Serrano, F.; Vera-Candeas, P.; Alonso-González, M.; Ranilla, J. (2017). Parallel Online Time Warping for Real-Time Audio-to-Score Alignment in Multi-core Systems. The Journal of Supercomputing. 73(1):126-138. https://doi.org/10.1007/s11227-016-1647-5S126138731Joder C, Essid S, Richard G (2011) A conditional random field framework for robust and scalable audio-to-score matching. IEEE Trans Speech Audio Lang Process 19(8):2385–2397McNab RJ, Smith LA, Witten IH, Henderson CL, Cunningham SJ (1996) Towards the digital music library: tune retrieval from acoustic input. In: DL 96: Proceedings of the first ACM international conference on digital libraries. ACM, New York, pp 11–18Dannenberg RB (2007) An intelligent multi-track audio editor. In: Proceedings of international computer music conference (ICMC), vol 2, pp 89–94Duan Z, Pardo B (2011) Soundprism: an online system for score-informed source separation of music audio. IEEE J Sel Topics Signal Process 5(6):1205–1215Dixon S (2005) Live tracking of musical performances using on-line time warping. In: Proceedings of the international conference on digital audio effects (DAFx), Madrid, Spain, pp 92–97Orio N, Schwarz D (2001) Alignment of monophonic and polyphonic music to a score. In: Proceedings of the international computer music conference (ICMC), pp 129–132Simon I, Morris D, Basu S (2008) MySong: automatic accompaniment generation for vocal melodies. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, pp 725–734Rodriguez-Serrano FJ, Duan Z, Vera-Candeas P, Pardo B, Carabias-Orti JJ (2015) Online score-informed source separation with adaptive instrument models. J New Music Res Lond 44(2):83–96Arzt A, Widmer G, Dixon S (2008) Automatic page turning for musicians via real-time machine listening. In: Proceedings of the 18th European conference on artificial intelligence. IOS Press, Amsterdam, pp 241–245Carabias-Orti JJ, Rodriguez-Serrano FJ, Vera-Candeas P, Canadas-Quesada FJ, Ruiz-Reyes N (2015) An audio to score alignment framework using spectral factorization and dynamic time warping. In: 16th International Society for music information retrieval conference, pp 742–748Rodríguez-Serrano FJ, Menéndez-Canal J, Vidal A, Cañadas-Quesada FJ, Cortina R (2015) A DTW based score following method for score-informed sound source separation. In: Proceedings of the 12th sound and music computing conference 2015 (SMC-15), Ireland, pp 491–496Carabias-Ortí JJ, Rodríguez-Serrano FJ, Vera-Candeas P, Cañadas-Quesada FJ, Ruíz-Reyes N (2013) Constrained non-negative sparse coding using learnt instrument templates for realtime music transcription. Eng Appl Artif Intell 26(7):1671–1680Raphael C (2006) Aligning music audio with symbolic scores using a hybrid graphical model. Mach Learn 65:389–409Schreck-Ensemble (2001–2004) ComParser 1.42. http://home.hku.nl/~pieter.suurmond/SOFT/CMP/doc/cmp.html . Accessed Sept 2015Itakura F (1975) Minimum prediction residual principle applied to speech recognition. IEEE Trans Acoust Speech Signal Process 23:52–72Dannenberg R, Hu N (2003) Polyphonic audio matching for score following and intelligent audio editors. In: Proceedings of the international computer music conference. International Computer Music Association, San Francisco, pp 27–34Mueller M, Kurth F, Roeder T (2004) Towards an efficient algorithm for automatic score-to-audio synchronization. In: Proceedings of the 5th international conference on music information retrieval, Barcelona, SpainMueller M, Mattes H, Kurth F (2006) An efficient multiscale approach to audio synchronization. In: Proceedings of the 7th international conference on music information retrieval, Victoria, CanadaKaprykowsky H, Rodet X (2006) Globally optimal short-time dynamic time warping applications to score to audio alignment. In: IEEE ICASSP, Toulouse, France, pp 249–252Fremerey C, Müller M, Clausen M (2010) Handling repeats and jumps in score-performance synchronization. In: Proceedings of ISMIR, pp 243–248Arzt A, Widmer G (2010) Towards effective any-time music tracking. In: Proceedings of starting AI researchers symposium (STAIRS), Lisbon, Portugal, pp 24–3

    Role of Astrophorina sponges (Demospongiae) in food-web interactions at the Flemish Cap (NW Atlantic)

    Get PDF
    Deep-sea sponges are important contributors to carbon and nitrogen cycling due to their large filtration capacity. Species of the suborder Astrophorina form dense sponge grounds in the North Atlantic, where they serve as prey for spongivores, but also have non-trophic interactions with commensal epi- and endobionts. At the Flemish Cap (NW Atlantic), Astrophorina sponges are present in 4 previously described deep-sea epifaunal assemblages: the deep-sea coral assemblage, lower slope assemblages 1 and 2, and the deep-sea sponge assemblage. To investigate their role in trophic and non-trophic interactions at the Flemish Cap, we developed trophic and non-trophic interaction web models for each of the 4 faunal assemblages using the published literature. By excluding the sponges from the models, we estimated how many trophic, and facultative and obligatory non-trophic, interactions would be lost, and how this removal affected food-web properties (number of compartments, links, link density, and connectance). Astrophorina sponges were mostly linked via facultative non-trophic interactions to 59, 58, 84, and 90 compartments in the deep-sea coral, the lower slope 1 and 2, and the deep-sea sponge assemblages, respectively. Direct trophic interactions only existed with Syllidae, Echinasteridae, and Pterasteridae. Astrophorina sponges were considered highest impact taxa in all faunal assemblages and, together with sea pens, they were identified as structural species/habitat formers and foundation species in the deep-sea coral and deep-sea sponge habitat. Hence, even less abundant, or non-representative (indicator), species can be important for food-web integrity via trophic and non-trophic interactions

    Intrinsic Plasmon-Phonon Interactions in Highly Doped Graphene: A Near-Field Imaging Study.

    Get PDF
    Author's accepted versionFinal version available from ACS via the DOI in this recordAs a two-dimensional semimetal, graphene offers clear advantages for plasmonic applications over conventional metals, such as stronger optical field confinement, in situ tunability, and relatively low intrinsic losses. However, the operational frequencies at which plasmons can be excited in graphene are limited by the Fermi energy EF, which in practice can be controlled electrostatically only up to a few tenths of an electronvolt. Higher Fermi energies open the door to novel plasmonic devices with unprecedented capabilities, particularly at mid-infrared and shorter-wave infrared frequencies. In addition, this grants us a better understanding of the interaction physics of intrinsic graphene phonons with graphene plasmons. Here, we present FeCl3-intercalated graphene as a new plasmonic material with high stability under environmental conditions and carrier concentrations corresponding to EF > 1 eV. Near-field imaging of this highly doped form of graphene allows us to characterize plasmons, including their corresponding lifetimes, over a broad frequency range. For bilayer graphene, in contrast to the monolayer system, a phonon-induced dipole moment results in increased plasmon damping around the intrinsic phonon frequency. Strong coupling between intrinsic graphene phonons and plasmons is found, supported by ab initio calculations of the coupling strength, which are in good agreement with the experimental data.FJGA and PA-G acknowledge support from the Spanish Ministry of Economy and Competitiveness through the national programs MAT2014-59096-P and FIS2014-60195-JIN, respectively. MFC and SR acknowledge support from EPSRC (Grant no. EP/J000396/1, 281 EP/K017160/1, EP/K010050/1, EPG036101/1, EP/M001024/1, EPM- 002438/1), from Royal Society International Exchanges Scheme 2012/R3 and 2013/R2 and from European Commission (FP7-ICT-2013-613024-GRASP). SD, DNB and MF acknowledge support of ONR N00014-15-1-2671. DNB is the Moore Investigator in Quantum Materials funded by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4533

    Real-time Soundprism

    Full text link
    [EN] This paper presents a parallel real-time sound source separation system for decomposing an audio signal captured with a single microphone in so many audio signals as the number of instruments that are really playing. This approach is usually known as Soundprism. The application scenario of the system is for a concert hall in which users, instead of listening to the mixed audio, want to receive the audio of just an instrument, focusing on a particular performance. The challenge is even greater since we are interested in a real-time system on handheld devices, i.e., devices characterized by both low power consumption and mobility. The results presented show that it is possible to obtain real-time results in the tested scenarios using an ARM processor aided by a GPU, when this one is present.This work has been supported by the "Ministerio de Economia y Competitividad" of Spain and FEDER under projects TEC2015-67387-C4-{1,2,3}-R.Muñoz-Montoro, AJ.; Ranilla, J.; Vera-Candeas, P.; Combarro, EF.; Alonso-Jordá, P. (2019). Real-time Soundprism. The Journal of Supercomputing. 75(3):1594-1609. https://doi.org/10.1007/s11227-018-2703-0S15941609753Alonso P, Cortina R, Rodríguez-Serrano FJ, Vera-Candeas P, Alonso-González M, Ranilla J (2017) Parallel online time warping for real-time audio-to-score alignment in multi-core systems. J Supercomput 73:126. https://doi.org/10.1007/s11227-016-1647-5Carabias-Orti JJ, Cobos M, Vera-Candeas P, Rodríguez-Serrano FJ (2013) Nonnegative signal factorization with learnt instrument models for sound source separation in close-microphone recordings. EURASIP J Adv Signal Process 2013:184. https://doi.org/10.1186/1687-6180-2013-184Carabias-Orti JJ, Rodriguez-Serrano FJ, Vera-Candeas P, Canadas-Quesada FJ, Ruiz-Reyes N (2015) An audio to score alignment framework using spectral factorization and dynamic time warping. In: 16th International Society for Music Information Retrieval Conference, pp 742–748Díaz-Gracia N, Cocaña-Fernández A, Alonso-González M, Martínez-Zaldívar FJ, Cortina R, García-Mollá VM, Alonso P, Ranilla J (2014) NNMFPACK: a versatile approach to an NNMF parallel library. In: Proceedings of the 2014 International Conference on Computational and Mathematical Methods in Science and Engineering, pp 456–465Díaz-Gracia N, Cocaña-Fernández A, Alonso-González M, Martínez-Zaldívar FJ, Cortina R, García-Mollá VM, Vidal AM (2015) Improving NNMFPACK with heterogeneous and efficient kernels for β\beta β -divergence metrics. J Supercomput 71:1846–1856. https://doi.org/10.1007/s11227-014-1363-yDriedger J, Grohganz H, Prätzlich T, Ewert S, Müller M (2013) Score-informed audio decomposition and applications. In: Proceedings of the 21st ACM International Conference on Multimedia, pp 541–544Duan Z, Pardo B (2011) Soundprism: an online system for score-informed source separation of music audio. IEEE J Sel Top Signal Process 5(6):1205–1215Duong NQ, Vincent E, Gribonval R (2010) Under-determined reverberant audio source separation using a full-rank spatial covariance model. IEEE Trans Audio Speech 18(7):1830–1840. https://doi.org/10.1109/TASL.2010.2050716Ewert S, Müller M (2011) Estimating note intensities in music recordings. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp 385–388Ewert S, Pardo B, Mueller M, Plumbley MD (2014) Score-informed source separation for musical audio recordings: an overview. IEEE Signal Process Mag 31:116–124. https://doi.org/10.1109/MSP.2013.2296076Fastl H, Zwicker E (2007) Psychoacoustics. Springer, BerlinGanseman J, Scheunders P, Mysore GJ, Abel JS (2010) Source separation by score synthesis. Int Comput Music Conf 2010:1–4Goto M, Hashiguchi H, Nishimura T, Oka R (2002) RWC music database: popular, classical and jazz music databases. In: ISMIR, vol 2, pp 287–288Goto M (2004) Development of the RWC music database. In: Proceedings of the 18th International Congress on Acoustics (ICA 2004), ppp 553–556Hennequin R, David B, Badeau R (2011) Score informed audio source separation using a parametric model of non-negative spectrogram. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp 45–48. https://doi.org/10.1109/ICASSP.2011.5946324Itoyama K, Goto M, Komatani K et al (2008) Instrument equalizer for query-by-example retrieval: improving sound source separation based on integrated harmonic and inharmonic models. In: ISMIR. https://doi.org/10.1136/bmj.324.7341.827Marxer R, Janer J, Bonada J (2012) Low-latency instrument separation in polyphonic audio using timbre models. In: International Conference on Latent Variable Analysis and Signal Separation, pp 314–321Miron M, Carabias-Orti JJ, Janer J (2015) Improving score-informed source separation for classical music through note refinement. In: ISMIR, pp 448–454Ozerov A, Févotte C (2010) Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE Trans Audio Speech Lang Process 18:550–563. https://doi.org/10.1109/TASL.2009.2031510Ozerov A, Vincent E, Bimbot F (2012) A general flexible framework for the handling of prior information in audio source separation. IEEE Trans Audio Speech Lang Process 20:1118–1133. https://doi.org/10.1109/TASL.2011.2172425Pätynen J, Pulkki V, Lokki T (2008) Anechoic recording system for symphony orchestra. Acta Acust United Acust 94:856–865. https://doi.org/10.3813/AAA.918104Raphael C (2008) A classifier-based approach to score-guided source separation of musical audio. Comput Music J 32:51–59. https://doi.org/10.1162/comj.2008.32.1.51Rodriguez-Serrano FJ, Duan Z, Vera-Candeas P, Pardo B, Carabias-Orti JJ (2015) Online score-informed source separation with adaptive instrument models. J New Music Res 44:83–96. https://doi.org/10.1080/09298215.2014.989174Rodriguez-Serrano FJ, Carabias-Orti JJ, Vera-Candeas P, Martinez-Munoz D (2016) Tempo driven audio-to-score alignment using spectral decomposition and online dynamic time warping. ACM Trans Intell Syst Technol 8:1–20. https://doi.org/10.1145/2926717Sawada H, Araki S, Makino S (2011) Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment. IEEE Trans Audio Speech Lang Process 19(3):516–527. https://doi.org/10.1109/TASL.2010.2051355Vincent E, Araki S, Theis F et al (2012) The signal separation evaluation campaign (2007–2010): achievements and remaining challenges. Signal Process 92:1928–1936. https://doi.org/10.1016/j.sigpro.2011.10.007Vincent E, Bertin N, Gribonval R, Bimbot F (2014) From blind to guided audio source separation: how models and side information can improve the separation of sound. IEEE Signal Process Mag 31:107–115. https://doi.org/10.1109/MSP.2013.229744
    • …
    corecore