44 research outputs found

    Mec1p associates with functionally compromised telomeres

    Get PDF
    In many organisms, telomere DNA consists of simple sequence repeat tracts that are required to protect the chromosome end. In the yeast Saccharomyces cerevisiae, tract maintenance requires two checkpoint kinases of the ATM family, Tel1p and Mec1p. Previous work has shown that Tel1p is recruited to functional telomeres with shorter repeat tracts to promote telomerase-mediated repeat addition, but the role of Mec1p is unknown. We found that Mec1p telomere association was detected as cells senesced when telomere function was compromised by extreme shortening due to either the loss of telomerase or the double-strand break binding protein Ku. Exonuclease I effects the removal of the 5' telomeric strand, and eliminating it prevented both senescence and Mec1p telomere association. Thus, in contrast to Tel1p, Mec1p associates with short, functionally compromised telomeres

    ASF1A and ATM regulate H3K56-mediated cell-cycle checkpoint recovery in response to UV irradiation

    Get PDF
    Successful DNA repair within chromatin requires coordinated interplay of histone modifications, chaperones and remodelers for allowing access of repair and checkpoint machineries to damaged sites. Upon completion of repair, ordered restoration of chromatin structure and key epigenetic marks herald the cell’s normal function. Here, we demonstrate such a restoration role of H3K56 acetylation (H3K56Ac) mark in response to ultraviolet (UV) irradiation of human cells. A fast initial deacetylation of H3K56 is followed by full renewal of an acetylated state at ~24–48 h post-irradiation. Histone chaperone, anti-silencing function-1 A (ASF1A), is crucial for post-repair H3K56Ac restoration, which in turn, is needed for the dephosphorylation of γ-H2AX and cellular recovery from checkpoint arrest. On the other hand, completion of DNA damage repair is not dependent on ASF1A or H3K56Ac. H3K56Ac restoration is regulated by ataxia telangiectasia mutated (ATM) checkpoint kinase. These cross-talking molecular cellular events reveal the important pathway components influencing the regulatory function of H3K56Ac in the recovery from UV-induced checkpoint arrest

    Dissociation of CAK from Core TFIIH Reveals a Functional Link between XP-G/CS and the TFIIH Disassembly State

    Get PDF
    Transcription factor II H (TFIIH) is comprised of core TFIIH and Cdk-activating kinase (CAK) complexes. Here, we investigated the molecular and cellular manifestation of the TFIIH compositional changes by XPG truncation mutations. We showed that both core TFIIH and CAK are rapidly recruited to damage sites in repair-proficient cells. Chromatin immunoprecipitation against TFIIH and CAK components revealed a physical engagement of CAK in nucleotide excision repair (NER). While XPD recruitment to DNA damage was normal, CAK was not recruited in severe XP-G and XP-G/CS cells, indicating that the associations of CAK and XPD to core TFIIH are differentially affected. A CAK inhibition approach showed that CAK activity is not required for assembling pre-incision machinery in vivo or for removing genomic photolesions. Instead, CAK is involved in Ser5-phosphorylation and UV-induced degradation of RNA polymerase II. The CAK inhibition impaired transcription from undamaged and UV-damaged reporter, and partially decreased transcription of p53-dependent genes. The overall results demonstrated that a) XP-G/CS mutations affect the disassembly state of TFIIH resulting in the dissociation of CAK, but not XPD from core TFIIH, and b) CAK activity is not essential for global genomic repair but involved in general transcription and damage-induced RNA polymerase II degradation

    The mcm2-1 mutation of yeast causes DNA damage with a RAD9 requirement for repair

    No full text
    The minichromosome maintenance mutation, mcm2-1, has been found to synthesize damaged DNA at 35°C. Growth at this temperature rendered the mutant strain more sensitive to killing by ultraviolet irradiation. DNA damage could also be detected by pulsed-field gel electrophoresis, where a higher fraction of the DNA loaded was retained in the inserts at the wells. During the exponential phase of growth at this temperature about 50% of the cells had large buds, with the nucleus at or near the neck of the bud in most cases. The incorporation of the rad9 deletion in the mcm2-1-carrying strain caused a reduction in the percentage of large-budded cells and a moderate loss of cell viability. The results are consistent with mcm2-1 causing DNA damage leading to the arrest of cells in the S/G<SUB>2</SUB> phase of the cell cycle, which was partially dependent on the RAD9 gene product

    A 61-kb ring chromosome shows an ARS-dependent increase in its mitotic stability in the mcm2 mutant of yeast

    No full text
    We have studied the effects of ARS addition and deletion on the maintenance of a 61-kb ring derivative of chromosome III in a minichromosome maintenance mutant of yeast carrying the mcm2-1 mutation. When this ring chromosome, CIIIR, had either of its two strong origins deleted, the resultant chromosome showed a much greater instability in the mutant as compared to that of the wild-type strain. Integration of more ARSs improved the maintenance of CIIIR in the mutant but not in the wild-type strain. Increase in the size of CIIIR, without any ARS addition, did not improve the stability in either strain. A spontaneous revertant for improved growth at 35°C also co-reverted for minichromosome and CIIIR maintenance. The results suggest that ARS malfunctioning leads to minichromosome and chromosome loss from mutant cells, affecting their growth at higher temperatures
    corecore