534 research outputs found
Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation.
Gasdermin E (GSDME/DFNA5) cleavage by caspase-3 liberates the GSDME-N domain, which mediates pyroptosis by forming pores in the plasma membrane. Here we show that GSDME-N also permeabilizes the mitochondrial membrane, releasing cytochrome c and activating the apoptosome. Cytochrome c release and caspase-3 activation in response to intrinsic and extrinsic apoptotic stimuli are significantly reduced in GSDME-deficient cells comparing with wild type cells. GSDME deficiency also accelerates cell growth in culture and in a mouse model of melanoma. Phosphomimetic mutation of the highly conserved phosphorylatable Thr6 residue of GSDME, inhibits its pore-forming activity, thus uncovering a potential mechanism by which GSDME might be regulated. Like GSDME-N, inflammasome-generated gasdermin D-N (GSDMD-N), can also permeabilize the mitochondria linking inflammasome activation to downstream activation of the apoptosome. Collectively, our results point to a role of gasdermin proteins in targeting the mitochondria to promote cytochrome c release to augment the mitochondrial apoptotic pathway
Serum response factor cleavage by caspases 3 and 7 linked to apoptosis in human BJAB cells
Apoptosis involves the cessation of cellular processes, the breakdown of intracellular organelles, and, finally, the nonphlogistic clearance of apoptotic cells from the body. Important for these events is a family of proteases, caspases, which are activated by a proteolytic cleavage cascade and drive apoptosis by targeting key proteins within the cell. Here, we demonstrate that serum response factor (SRF), a transcription factor essential for proliferative gene expression, is cleaved by caspases and that this cleavage occurs in proliferating murine fibroblasts and can be induced in the human B-cell line BJAB. We identify the two major sites at which SRF cleavage occurs as Asp245 and Asp254, the caspases responsible for the cleavage and generate a mutant of SRF resistant to cleavage in BJAB cells. Investigation of the physiological and functional significance of SRF cleavage reveals that it correlates with the loss of e-fos expression, whereby neither SRF cleavage fragment retains transcriptional activity. Moreover, the expression of a noncleavable SRF in BJAB cells suppresses apoptosis induced by Fas cross-linking. These results suggest that for apoptosis to proceed, the transcriptional events promoting cell survival and proliferation, in which SRF is involved, must first be inactivated
Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice
The mouse mutant mnd2 (motor neuron degeneration 2) exhibits muscle wasting, neurodegeneration, involution of the spleen and thymus, and death by 40 days of age(1,2). Degeneration of striatal neurons, with astrogliosis and microglia activation, begins at around 3 weeks of age, and other neurons are affected at later stages'. Here we have identified the mnd2 mutation as the missense mutation Ser276Cys in the protease domain of the nuclear-encoded mitochondrial serine protease Omi (also known as HtrA2 or Prss25). Protease activity of Omi is greatly reduced in tissues of mnd2 mice but is restored in mice rescued by a bacterial artificial chromosome transgene containing the wildtype Omi gene. Deletion of the PDZ domain partially restores protease activity to the inactive recombinant Omi protein carrying the Ser276Cys mutation, suggesting that the mutation impairs substrate access or binding to the active site pocket. Loss of Omi protease activity increases the susceptibility of mitochondria to induction of the permeability transition, and increases the sensitivity of mouse embryonic fibroblasts to stress-induced cell death. The neurodegeneration and juvenile lethality in mnd2 mice result from this defect in mitochondrial Omi protease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62561/1/nature02052.pd
Interleukin-1 beta-converting enzyme-like protease cleaves DNA-dependent protein kinase in cytotoxic T cell killing.
Cytotoxic T cells (CTL) represent the major defense mechanism against the spread of virus infection. It is believed that the pore-forming protein, perforin, facilitates the entry of a series of serine proteases (particularly granzyme B) into the target cell which ultimately leads to DNA fragmentation and apoptosis. We demonstrate here that during CTL-mediated cytolysis the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an enzyme implicated in the repair of double strand breaks in DNA, is specifically cleaved by an interleukin (IL)-1 beta-converting enzyme (ICE)-like protease. A serine protease inhibitor, 3,4-dichloroisocoumarin (DCl), which is known to block granzyme B activity, inhibited CTL-induced apoptosis and prevented the degradation of DNA-PKcs in cells but failed to prevent the degradation of purified DNA-PKcs by CTL extracts. However, Tyr-Val-Ala-Asp-CH2Cl (YVAD-CMK) and other cysteine protease inhibitors prevented the degradation of purified DNA-PKcs by CTL extracts. Furthermore, incubation of DNA-PKcs with granzyme B did not produce the same cleavage pattern observed in cells undergoing apoptosis and when this substrate was incubated with either CTL extracts or the ICE-like protease, CPP32. Sequence analysis revealed that the cleavage site in DNA-PKcs during CTL killing was the same as that when this substrate was exposed to CPP32. This study demonstrates for the first time that the cleavage of DNA-PKcs in this intact cell system is exclusively due to an ICE-like protease
SUMO-mediated regulation of NLRP3 modulates inflammasome activity.
The NLRP3 inflammasome responds to infection and tissue damage, and rapidly escalates the intensity of inflammation by activating interleukin (IL)-1Ξ², IL-18 and cell death by pyroptosis. How the NLRP3 inflammasome is negatively regulated is poorly understood. Here we show that NLRP3 inflammasome activation is suppressed by sumoylation. NLRP3 is sumoylated by the SUMO E3-ligase MAPL, and stimulation-dependent NLRP3 desumoylation by the SUMO-specific proteases SENP6 and SENP7 promotes NLRP3 activation. Defective NLRP3 sumoylation, either by NLRP3 mutation of SUMO acceptor lysines or depletion of MAPL, results in enhanced caspase-1 activation and IL-1Ξ² release. Conversely, depletion of SENP7 suppresses NLRP3-dependent ASC oligomerisation, caspase-1 activation and IL-1Ξ² release. These data indicate that sumoylation of NLRP3 restrains inflammasome activation, and identify SUMO proteases as potential drug targets for the treatment of inflammatory diseases
Predictive Capacity of Immune-Related Adverse Events and Cytokine Profiling in Neoadjuvant Immune Checkpoint Inhibitor Trials for Head and Neck Squamous Cell Carcinoma\
OBJECTIVES: Certain low-level immune-related adverse events (irAEs) have been associated with survival benefits in patients with various solid tumors on immune checkpoint inhibitors (ICIs). We aimed to investigate the association between irAEs and response to neoadjuvant ICIs in patients with head and neck squamous cell carcinoma (HNSCC) and to identify differences in circulating cytokine levels based on irAE status.
METHODS: This was a retrospective cohort study including three neoadjuvant clinical trials from July 2017 to January 2022: NCT03238365 (nivolumab Β± tadalafil), NCT03854032 (nivolumab Β± BMS986205), NCT03618654 (durvalumab Β± metformin). The presence and type of irAEs, pathologic treatment response, and survival were compared. Canonical linear discriminant analysis (LDA) was performed to identify combinations of circulating cytokines predictive of irAEs using plasma sample multiplex assay.
RESULTS: Of 113 participants meeting inclusion criteria, 32 (28.3%) developed irAEs during treatment or follow-up. Positive p16 status was associated with irAEs (odds ratio [OR] 2.489; 95% CI 1.069-6.119; pβ=β0.043). irAEs were associated with pathologic treatment response (OR 3.73; 95% CI 1.34-10.35; pβ=β0.011) and with higher OS in the combined cohort (HR 0.319; 95% CI 0.113-0.906; pβ=β0.032). Patients with irAEs within the nivolumab cohort had significant elevations of select cytokines pre-treatment. Canonical LDA identified key drivers of irAEs among all trials, which were highly predictive of future irAE status.
CONCLUSIONS: irAEs are associated with response to neoadjuvant ICI therapy in HNSCC and can serve as clinical indicators for improved clinical outcomes. irAEs can be predicted by concentrations of several circulating cytokines prior to treatment
The baculovirus anti-apoptotic p35 protein promotes transformation of mouse embryo fibroblasts.
The baculovirus p35 protein is a potent inhibitor of programmed cell death induced by a variety of stimuli in insects, nematodes, and mammalian cell lines. The broad ability of p35 in preventing apoptosis has led us to investigate its effect on mouse embryo fibroblasts in vitro and in vivo. For this purpose, we have used R- cells (3T3-like fibroblasts derived from mouse embryos with a targeted disruption of the insulin-like growth factor I receptor (IGF-IR) genes) and R508 cells (derived from R- and with 15 x 10(3) IGF-IRs per cell). Both cell lines grow normally in monolayer, but they do not form colonies in soft agar, and they are non-tumorigenic in nude mice. We show here that, in addition to its anti-apoptotic effect, p35 causes transformation of R508 cells, as evidenced by the following: 1) decreased growth factor requirements, 2) ability to form foci in monolayer and colonies in soft agar, and 3) ability to form tumors in nude mice. Since R- cells stably transfected with p35 do not transform, our observations suggest that in addition to its effect as an inhibitor of apoptosis, the baculovirus p35 protein has transforming potential that requires the presence of the IGF-IR. The possibility that these two properties could be separated was confirmed by demonstrating that R508 cells expressing another anti-apoptotic protein, Bcl-2, could not form tumors in nude mice
A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus
The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses
- β¦