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The Baculovirus Anti-apoptotic p35 Protein Promotes
Transformation of Mouse Embryo Fibroblasts*

(Received for publication, January 16, 1998)
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Paul D. Friesen¶, Emad S. Alnemri‡, and Renato Baserga‡

From the ‡Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and the ¶Institute for
Molecular Virology, University of Wisconsin, Madison, Wisconsin 53706

The baculovirus p35 protein is a potent inhibitor of
programmed cell death induced by a variety of stimuli
in insects, nematodes, and mammalian cell lines. The
broad ability of p35 in preventing apoptosis has led us to
investigate its effect on mouse embryo fibroblasts in
vitro and in vivo. For this purpose, we have used R2 cells
(3T3-like fibroblasts derived from mouse embryos with a
targeted disruption of the insulin-like growth factor I
receptor (IGF-IR) genes) and R508 cells (derived from
R2 and with 15 3 103 IGF-IRs per cell). Both cell lines
grow normally in monolayer, but they do not form colo-
nies in soft agar, and they are non-tumorigenic in nude
mice. We show here that, in addition to its anti-apoptotic
effect, p35 causes transformation of R508 cells, as evi-
denced by the following: 1) decreased growth factor re-
quirements, 2) ability to form foci in monolayer and
colonies in soft agar, and 3) ability to form tumors in
nude mice. Since R2 cells stably transfected with p35 do
not transform, our observations suggest that in addition
to its effect as an inhibitor of apoptosis, the baculovirus
p35 protein has transforming potential that requires the
presence of the IGF-IR. The possibility that these two
properties could be separated was confirmed by demon-
strating that R508 cells expressing another anti-apo-
ptotic protein, Bcl-2, could not form tumors in nude
mice.

The baculovirus gene product p35 is a potent suppressor of
programmed cell death induced by different stimuli in insects,
nematodes, and mammalian cell lines (1–11). The broad ability
of p35 to block apoptosis induced by different signals in diverse
organisms is generally considered to be due to inhibition of
ICE,1 ICH-1, ICH-2, CPP32, and the Caenorhabditis elegans
CED-3 (12, 13).

It is now well established that the IGF-IR plays a crucial role
in transformation and protects cells from apoptosis. Fibroblasts
derived from mouse embryos with a targeted disruption of the
IGF-IR genes (14, 15) cannot be transformed by a variety of
viral and cellular oncogenes, such as SV40 large T antigen, an

activated Ha-ras or a combination of both (16, 17), by the E5
protein of the bovine papilloma virus (18), by an activated c-src
(19), and by overexpressed growth factor receptors (reviewed in
Ref. 20), all conditions that readily transform fibroblasts with
wild-type levels of IGF-IR. Conversely, tumor cells with a
down-regulation of the IGF-IR (by antisense strategies or
by expression of dominant negative mutants) are no longer
tumorigenic (21–26).

Overexpression of the IGF-IR protects cells from apoptosis
(27–31), whereas a functional impairment of the IGF-IR (either
by decreasing its number or by certain mutations) renders the
cells more susceptible to undergo apoptosis (21–26, 30, 32).
Although the mechanisms by which the targeting of the IGF-IR
results in apoptosis remain to be elucidated, several reports
have shown that IGF-I protects cells from apoptosis through
activation of the phosphatidylinositol 3-kinase/Akt pathway
(33–37). In addition, IGF-I can suppress ICE-mediated cell
death in Rat-1 fibroblasts (38).

On this basis, we decided to investigate the relationship
between these two anti-apoptotic proteins, p35 and the IGF-IR,
using mouse embryo fibroblasts stably transfected with a plas-
mid coding for the baculovirus p35 protein derived from the
Autographa californica nuclear polyhedrosis virus (Refs. 3–5
and 8–10). In this study, we evaluated the effects of the bacu-
lovirus p35 protein on mouse embryo fibroblasts in vitro and in
vivo. We show that the expression of p35 in R508 cells, but not
in R2 cells, results in anchorage-independent growth.
R508.p35 cells were able to form foci in monolayer and colonies
in soft agar and to develop tumors in nude mice. In parallel
experiments, R508 cells expressing another anti-apoptotic pro-
tein, Bcl-2, were not tumorigenic in nude mice, indicating that
in mouse embryo fibroblasts transformation and protection
from apoptosis can be separated. Our observations also indi-
cate that, in addition to its effect as an inhibitor of apoptosis,
the baculovirus p35 protein has a transforming potential that
requires the presence of the IGF-IR.

EXPERIMENTAL PROCEDURES

Cell Lines—R2 cells are cells derived from mouse embryos with a
targeted disruption of the IGF-IR genes (14, 15). These cells, totally
devoid of IGF-IRs, have been previously characterized and described in
detail (16, 17). R508 cells are R2 cells stably transfected with pMRIG-
FIR12 (39), a derivative of CVN-IGFIR that expresses both the hygro-
mycin B phosphotransferase gene of Escherichia coli and the human
IGF-IR cDNA under the control of the rat IGF-IR promoter. These cells
have been previously characterized regarding the number of IGF-I
binding sites, mitogenicity, and clonogenicity in soft agar (39).

Plasmids—The plasmid pPRM-35KORF coding for the p35 protein
derived from the A. californica nuclear polyhedrosis virus (3) was sub-
cloned into the BamHI site of the mammalian expression vector pcDNA
(Invitrogen), as described previously (9). The plasmid encoding for
human wild-type Bcl-2 subcloned in pcDNA was a kind gift of Dr. S.
Haldar (Thomas Jefferson University).

Stable Transfections—R2 and R508 cells were co-transfected with
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the plasmids encoding for p35, or Bcl-2, or the empty vector and a
plasmid (pPDV61) coding for the puromycin resistance gene (40). Pu-
romycin-resistant clones, selected in medium containing 2.5 mg/ml pu-
romycin, were screened by Western blot analysis for expression of the
baculovirus p35 protein (using a rabbit antiserum anti-p35, as de-
scribed in Ref. 3) or of human Bcl-2 (using a monoclonal antibody
anti-human Bcl-2 from Santa Cruz Biotechnology).

Western Blot Analysis—Proteins from cell lysates (20 mg) were sep-
arated in a 4–15% SDS-polyacrylamide gel electrophoresis and trans-
ferred to nitrocellulose. After transfer, the filters were blocked for 1 h
with 10% non-fat milk in PBS, 0.1% Tween 20 and incubated with the
rabbit antiserum anti-p35 (1/5000) for 1 h at room temperature followed
by a 1-h incubation with horseradish peroxidase-conjugated goat anti-
rabbit antibody (1/3000). Detection was performed using the ECL rea-
gent (Amersham Pharmacia Biotech). Detection of human Bcl-2 was
performed using a monoclonal antibody anti-human Bcl-2 followed by
incubation with a goat anti-mouse antibody conjugated with horserad-
ish peroxidase and the ECL reagent, as described above.

Cell Growth—The cells were seeded at a density of 3 3 104 cells per
35-mm plate in DMEM supplemented with 5% fetal bovine serum and
5% calf serum. After 6 h, the cells were carefully washed and trans-
ferred to serum-free medium (DMEM supplemented with 0.1% bovine
serum albumin fraction V (Sigma) and 0.1 mM ferrous sulfate). Two days
later, the quiescent cells were stimulated with 50 ng/ml IGF-I
(Bachem), and the growth response was evaluated after 48 h by cell
counting.

Focus Formation—For this assay, the cells were plated at a density
of 4 3 103 cells/cm2. After 14 days, when the cells became confluent and
began to form foci, the cultures were fixed in methanol containing 0.5%
crystal violet stain, as described previously (17).

Anchorage-independent Growth—Anchorage-independent growth
was determined by the ability of the cells to form colonies in soft agar.
Clonogenicity in soft agar was assayed by scoring the number of colo-
nies formed in medium (DMEM supplemented with 5% fetal bovine
serum and 5% calf serum) containing 0.2% agarose with a 0.4% agarose
medium underlay. Cells were seeded at a density of 103 cells per 35-mm
plate in duplicate. The number of colonies and their size were deter-
mined after 3 weeks.

Tumorigenesis in Nude Mice—The cells (106 cells suspended in 0.1 ml
of PBS, calcium- and magnesium-free) were injected subcutaneously
above the hind leg of 7-week-old male Balb/c nude mice (Charles River
Breeders). The animals were monitored daily for tumor development,
and they were sacrificed following the development of bulky tumors.
Three mice were used in each experimental condition.

Survival in Poly-HEMA Plates—Petri dishes (Falcon) were coated
with a film of poly-(2-hydroxyethylmethylacrylate) (poly-HEMA; Sig-
ma), following the protocol reported by Folkman and Moscona (41).
Cells were seeded at 105/ml. Cell number was determined after 24 h; the
results are expressed as percentage recovery of surviving cells from
initial seeding.

Statistics—The data represent the mean of three independent deter-
minations, each performed in duplicate. Statistical significance was
determined by Student’s t test.

RESULTS

Generation and Characterization of Cell Lines Expressing the
Baculovirus p35 Protein—Mouse embryo fibroblasts (3T3-like

cells), totally devoid of IGF-IRs (R2 cells) or expressing 15 3
103 IGF-IRs per cell (R508 cells), were stably co-transfected
with the plasmids encoding for p35 or the empty vector and the
puromycin resistance gene, as described under “Experimental
Procedures.” Puromycin-resistant clones, selected in 2.5 mg/ml
puromycin, were then screened for expression of p35 by West-
ern blot analysis using a rabbit antiserum anti-p35 (3). The
expression levels of p35 in representative clones of R2 cells are
shown in Fig. 1A, whereas for clones of R508 cells, the results
are shown in Fig. 1B.

Growth Characteristics of Cells Expressing p35—R508 cells
(untransfected or expressing the empty vector) are not able to
grow in serum-free medium supplemented with 50 ng/ml IGF-I
(Ref. 39 and Table I), although they remain viable under these
conditions (Ref. 39 and see below). Expression of p35 resulted
in growth in serum-free medium and increased mitogenic re-
sponse to IGF-I stimulation (Table I).

As expected, in R2 clones expressing p35 no mitogenic re-
sponse to IGF-I stimulation was observed (Table I). However, it
is also interesting that these cells do not grow in serum-free
medium, suggesting a requirement for a functional IGF-IR in
the growth stimulation by p35.

Focus Formation in Monolayer—R508 cells are contact in-
hibited in monolayer, even in the presence of 10% serum (Ref.
39 and Fig. 2A). R508 cells expressing the empty vector be-
haved as untransfected cells and were not able to form foci after
2 weeks in monolayer (Fig. 2B). Expression of p35 resulted in
formation of multiple and large foci (Fig. 2, C and D). However,
clones derived from R2 cells, despite the high expression levels
of p35, were not able to form foci in monolayer and remained
contact inhibited as the controls (Fig. 2G). This suggested that,
in order to transform mouse embryo fibroblasts, the baculovi-
rus p35 requires the presence of the IGF-IR, as reported for
other cellular and viral oncogenes (see Introduction). These
observations were confirmed by determining the ability of
these cells to form colonies in soft agar.

Anchorage-independent Growth of Cells Expressing p35—
The ability of cells expressing p35 to grow under anchorage-
independent conditions was evaluated by colony formation in
soft agar. R508 cells, seeded at 103 cells per 35-mm plate, do
not form colonies in soft agar (Ref. 39 and Table II). Clones
expressing the empty vector behaved as untransfected R508
cells. Expression of p35 conferred clonogenic potential to R508
cells. The number of colonies and their size seemed to be
dependent on the levels of expression of p35; clones expressing
low levels of p35 were able to form an average of 4 6 1 colonies
of 25 mm in diameter, whereas clones expressing high levels of
p35 formed an average of 22 6 5 colonies, ranging from 60 to
100 mm in diameter (Table II and Fig. 3, C and D).

FIG. 1. Characterization of cells expressing p35. A, expression of p35 in R2 cells was determined by Western blot analysis, as described
under “Experimental Procedures.” An empty vector clone together with representative clones expressing high levels of p35 are shown. A total of
6 empty vector clones and 48 clones expressing p35 were characterized. B, expression of p35 in R508 cells was determined by Western blot analysis,
as above. A representative empty vector clone together with clones expressing different levels of p35 are shown. A total of 6 empty vector clones
and 36 clones expressing p35 were characterized.
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The absence of the IGF-IR prevented the transforming po-
tential of p35 in R2 cells. Clones of R2 cells expressing high
levels of p35 were unable to form colonies in soft agar, although
single cells remained viable for at least 3 weeks after seeding
(Fig. 3B).

Tumorigenesis in Nude Mice—The ability to form tumors in
nude mice is the most rigorous test for transformation of cells
in culture. We therefore tested R508 cells expressing p35 for
their ability to form tumors when injected subcutaneously in
nude mice. R508 cells expressing p35 developed subcutaneous
tumors, which became palpable 10 days after injection of 106

cells (Fig. 4A). The controls receiving 106 R508 cells expressing
the empty vector remained tumor-free for as long as followed
(40 days, not shown). Similarly, R2 cells stably transfected
with p35 did not produce palpable tumors when injected into
nude mice (not shown).

Bcl-2 Protects from Apoptosis but Does Not Transform R508
Cells—We then asked whether transformation and protection
from apoptosis were two aspects of the same phenomenon or
whether they could be dissociated. To elucidate this, we decided

to express another anti-apoptotic protein in R508 cells, such as
Bcl-2, which is a potent inhibitor of apoptosis, and it is known
to lack transforming ability (42–45). A plasmid coding for hu-
man Bcl-2 was then co-transfected with a plasmid coding for
the puromycin resistance gene, and puromycin-resistant clones
were screened for Bcl-2 expression by Western blot. Clones
expressing Bcl-2 were then tested for survival in poly-HEMA
plates and tumorigenesis in nude mice. The results shown in
Fig. 4 demonstrate that R508 cells expressing human wild-type
Bcl-2, although fully protected from apoptosis (see Fig. 4, inset),
do not form tumors in nude mice (Fig. 4B).

DISCUSSION

The novel finding in this report is that the baculovirus p35
protein, besides its well established ability to protect cells from
apoptosis, has a previously unidentified property, which is its
ability to induce a transformed phenotype in mouse fibroblasts.
Our conclusion that p35 has transforming potential, above and
beyond its anti-apoptotic activity, is supported by the following
evidence: 1) R508 cells expressing p35 were able to grow in
serum-free medium and in serum-free medium supplemented
only with IGF-I (Table I), thus displaying reduced growth fac-

TABLE I
Growth characteristics of R2 and R508 cells expressing p35

The cells were seeded at a density of 3 3 104/cells per 35-mm plate in
triplicate, as described under “Experimental Procedures.” Cell number
was determined 2 days after addition of IGF-I (50 ng/ml) to the medium.

Cell type
Cell number (31024)

SFM IGF-I

R508 3.3 6 0.2 3.6 6 0.3
R508-Null-1 3.6 6 0.2 3.7 6 0.2
R508–35-23 6.6 6 0.1 8.0 6 0.1
R508–35-27 6.5 6 0.1 8.5 6 0.2

R2 2.2 6 0.3 2.1 6 0.2
R2 35–39 3.3 6 0.2 3.5 6 0.2
R2 35–47 3.2 6 0.2 3.4 6 0.2

FIG. 2. Focus formation assay. This assay was done as described
under “Experimental Procedures.” A, R508 untransfected cells. B, a
representative clone of R508 cells expressing the empty vector. C and D,
2 representative clones of R508 cells expressing p35. E, R2 untrans-
fected cells. F, a representative clone of R2 cells expressing the empty
vector. G, a representative clone of R2 cells expressing high levels
of p35.

TABLE II
Anchorage-independent growth of R508 cells expressing p35

Anchorage-independent growth was determined by colony formation
in soft agar. For this purpose, R508 cells and its derivative clones were
seeded at a density of 103 cells per 35-mm plate as described under
“Experimental Procedures.” The number of colonies and their size were
determined after 3 weeks.

Cell type
Clonogenicity in soft agar

No. of colonies Average size

mm

R508 0; 0
R508-Null-1 0; 0
R508-Null-2 0; 0
R508-p35–23 20; 18 80
R508-p35–27 22; 24 80
R508-p35–30 21; 27 80
R508-p35–24 13; 16 50
R508-p35–32 16; 10 50
R508-p35–36 12; 14 50
R508-p35–9 10; 12 40
R508-p35–10 9; 11 40
R508-p35–13 8; 9 40
R508-p35–15 5; 4 25
R508-p35–16 4; 3 25
R508-p35–21 2; 4 25

FIG. 3. Clonogenicity in soft agar. Microphotographs of soft agar
assays are shown. A, R2 cells. B, a representative clone in R2 cells
expressing high levels of p35 (clone 47). C and D, 2 representative
clones of R508 cells expressing p35 (clones 15 and 24).
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tor requirements; 2) they were able to form foci in monolayer
(Fig. 2) and colonies in soft agar (Table II and Fig. 3, C and D);
and 3) they developed tumors in nude mice (Fig. 4A). None of
these properties was shared by the parental cell line R508 or by
cells expressing the empty vector. The transforming potential
of p35 required the presence of the IGF-IR for p35 clones
derived from R2 cells remained contact inhibited when grown
in monolayer, even in the presence of 10% serum (Fig. 2G).
Moreover, they were not able to grow under anchorage-inde-
pendent conditions (Table II and Fig. 3B) nor develop tumors in
nude mice (data not shown). These observations are in agree-
ment with previous reports showing that R2 cells cannot be
transformed by a variety of other viral oncogenes, such as SV40
large T antigen, an activated Ha-ras, or a combination of both
(16, 17), or by the E5 protein of the bovine papilloma virus (18),
or by an activated c-src (19) all of which can readily transform
cells with wild-type levels of IGF-IR.

We believe that the transforming and anti-apoptotic activi-
ties of p35 can be dissociated for the following reasons: 1) R508
cells are not able to grow in serum-free medium supplemented
solely with 50 ng/ml IGF-I (Ref. 39 and Table I), but they
remain viable under these conditions and do not undergo ap-
optosis (Ref. 39 and data not shown). Expression of p35 allows
R508 cells to respond to IGF-I stimulation (Table I), decreasing
the requirements for growth factors (a characteristic of trans-
formed cells), under conditions in which the parental cell line
does not undergo apoptosis; 2) R508 cells expressing p35 are
transformed, but R2 cells expressing p35 are not (Figs. 2 and
3B); and 3) most important, R508 cells expressing another
anti-apoptotic protein, such as Bcl-2, are protected from apo-
ptosis (Fig. 4, inset), but they are not able to form tumors in
nude mice (Fig. 4B).

The mechanisms by which the baculovirus p35 protein in-
duces transformation of mouse embryo fibroblasts remain to be
elucidated. The use of mouse embryo fibroblasts totally devoid
of IGF-IRs has allowed us to dissociate the effects of p35 on cell
survival and transformation. The baculovirus p35 protein re-
quires the presence of the IGF-IR in order to transform mouse

embryo fibroblasts, as shown for a variety of other viral onco-
genes (16–18). One possible mechanism could be due to coop-
eration between IGF-IR and p35; the hypothesis we favor is
that the IGF-IR transmits a permissive signal that allows p35
and other viral oncogenes to transform mouse embryo fibro-
blasts. To date, the only viral oncogene shown to bypass the
requirement of IGF-IR for transformation is v-src (19). There-
fore, we can conclude that the mechanism by which the bacu-
lovirus p35 protein induces transformation of mouse embryo
fibroblasts is different from the one induced by v-src. One
possibility that is attractive is that p35 may up-regulate the
IGF system. Experiments along these lines are in progress.

We believe that the transforming ability of p35 is not simply
due to caspase inhibition. Our hypothesis is supported by an-
other report in the literature (46) showing that peptide inhib-
itors of ICE-related proteases delay but do not prevent cell
death in Rat-1 fibroblasts following etoposide treatment, Bak
expression, c-myc activation, or E1A expression. In the pres-
ence of these inhibitors, the cells are not able to divide or to
form colonies in soft agar (46). Therefore, the transforming
ability of p35 observed in the presence of the IGF-IR cannot be
explained only by its effect as a caspase inhibitor and should be
due to an additional activity of p35.

Similar observations have been reported for SV40 large T
antigen. It can suppress ICE-mediated cell death (47), but it
still requires the presence of the IGF-IR in order to transform
mouse embryo fibroblasts (16, 17). In addition, SV40 large T
antigen is known to transcriptionally activate the IGF-I pro-
moter and induce production of IGF-I (48). A similar effect
could be postulated for the baculovirus p35 protein. Future
experiments, requiring appropriate mutants of p35, in which
the anti-apoptotic domain can be dissociated from the trans-
forming domain, will address this issue.

In summary, in addition to its effect as an inhibitor of apo-
ptosis, we now report for the first time that the baculovirus p35
protein has transforming potential that requires the presence
of the IGF-IR.
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