5 research outputs found

    Hypomorphic variants in AK2 reveal the contribution of mitochondrial function to B-cell activation

    No full text
    Background The gene AK2 encodes the phosphotransferase adenylate kinase 2 (AK2). Human variants in AK2 cause reticular dysgenesis, a severe combined immunodeficiency with agranulocytosis, lymphopenia, and sensorineural deafness that requires hematopoietic stem cell transplantation for survival. Objective We investigated the mechanisms underlying recurrent sinopulmonary infections and hypogammaglobulinemia in 15 patients, ranging from 3 to 34 years of age, from 9 kindreds. Only 2 patients, both of whom had mildly impaired T-cell proliferation, each had a single clinically significant opportunistic infection. Methods Patient cells were studied with next-generation DNA sequencing, tandem mass spectrometry, and assays of lymphocyte and mitochondrial function. Results We identified 2 different homozygous variants in AK2. AK2(G100S) and AK2(A182D) permit residual protein expression, enzymatic activity, and normal numbers of neutrophils and lymphocytes. All but 1 patient had intact hearing. The patients' B cells had severely impaired proliferation and in vitro immunoglobulin secretion. With activation, the patients' B cells exhibited defective mitochondrial respiration and impaired regulation of mitochondrial membrane potential and quality. Although activated T cells from the patients with opportunistic infections demonstrated impaired mitochondrial function, the mitochondrial quality in T cells was preserved. Consistent with the capacity of activated T cells to utilize nonmitochondrial metabolism, these findings revealed a less strict cellular dependence of T-cell function on AK2 activity. Chemical inhibition of ATP synthesis in control T and B cells similarly demonstrated the greater dependency of B cells on mitochondrial function. Conclusions Our patients demonstrate the in vivo sequelae of the cell-specific requirements for the functions of AK2 and mitochondria, particularly in B-cell activation and antibody production

    Multisystem Inflammation and Susceptibility to Viral infections in Human ZNFX1 Deficiency

    Full text link
    BACKGROUND The recognition of viral nucleic acids is one of the primary triggers for a type I interferon-mediated antiviral immune response. Inborn errors of type I interferon immunity can be associated with increased inflammation and/or increased susceptibility to viral infections, as a result of dysbalanced interferon production. NFX1-type zinc-finger-containing 1 (ZNFX1) is an interferon-stimulated double-strand RNA sensor that restricts the replication of RNA viruses in mice. ZNFX1's role in the human immune response is not known. OBJECTIVE We studied 15 patients from 8 families with an autosomal recessive immunodeficiency characterized by severe infections by both RNA and DNA viruses and virally triggered inflammatory episodes with hemophagocytic-lymphohistiocytosis-like disease, early-onset seizures, as well as renal and lung disease. METHODS Whole exome sequencing was performed on 13 patients from 8 families. We investigated the transcriptome, post-transcriptional regulation of interferon-stimulated genes (ISGs) and predisposition to viral infections in primary cells from patients and controls stimulated with synthetic double-stranded nucleic acids. RESULTS Deleterious homozygous and compound heterozygous ZNFX1 variants were identified in all 13 patients. Stimulation of patient-derived primary cells with synthetic double-stranded nucleic acids was associated with a deregulated pattern of expression of ISGs and alterations in the half-life of ISGs mRNA and was associated with poorer clearance of virus infections by monocytes. CONCLUSION ZNFX1 is an important regulator of the response to double-stranded nucleic acids stimuli following viral infections. ZNFX1 deficiency predisposes to severe viral infections and a multisystem inflammatory disease

    Multisystem Inflammation and Susceptibility to Viral infections in Human ZNFX1 Deficiency

    Get PDF
    Background: Recognition of viral nucleic acids is one of the primary triggers for a type I interferon–mediated antiviral immune response. Inborn errors of type I interferon immunity can be associated with increased inflammation and/or increased susceptibility to viral infections as a result of dysbalanced interferon production. NFX1-type zinc finger–containing 1 (ZNFX1) is an interferon-stimulated double-stranded RNA sensor that restricts the replication of RNA viruses in mice. The role of ZNFX1 in the human immune response is not known. Objective: We studied 15 patients from 8 families with an autosomal recessive immunodeficiency characterized by severe infections by both RNA and DNA viruses and virally triggered inflammatory episodes with hemophagocytic lymphohistiocytosis-like disease, early-onset seizures, and renal and lung disease. Methods: Whole exome sequencing was performed on 13 patients from 8 families. We investigated the transcriptome, posttranscriptional regulation of interferon-stimulated genes (ISGs) and predisposition to viral infections in primary cells from patients and controls stimulated with synthetic double-stranded nucleic acids. Results: Deleterious homozygous and compound heterozygous ZNFX1 variants were identified in all 13 patients. Stimulation of patient-derived primary cells with synthetic double-stranded nucleic acids was associated with a deregulated pattern of expression of ISGs and alterations in the half-life of the mRNA of ISGs and also associated with poorer clearance of viral infections by monocytes. Conclusion: ZNFX1 is an important regulator of the response to double-stranded nucleic acids stimuli following viral infections. ZNFX1 deficiency predisposes to severe viral infections and a multisystem inflammatory disease.</p
    corecore