8 research outputs found

    Quantum engineering of atomic phase-shifts in optical clocks

    Full text link
    Quantum engineering of time-separated Raman laser pulses in three-level systems is presented to produce an ultra-narrow optical transition in bosonic alkali-earth clocks free from light shifts and with a significantly reduced sensitivity to laser parameter fluctuations. Based on a quantum artificial complex-wave-function analytical model, and supported by a full density matrix simulation including a possible residual effect of spontaneous emission from the intermediate state, atomic phase-shifts associated to Ramsey and Hyper-Ramsey two-photon spectroscopy in optical clocks are derived. Various common-mode Raman frequency detunings are found where the frequency shifts from off-resonant states are canceled, while strongly reducing their uncertainties at the 1018^{-18} level of accuracy.Comment: accepted for publication in PR

    The Gaussian Noise Model Extended to Polarization Dependent Loss and its Application to Outage Probability Estimation

    No full text
    We extend for the first time the Gaussian-noise model to account for polarization dependent loss (PDL) and validate it both numerically and experimentally. The model can be used to estimate outage probabilities induced by PDL-nonlinearity interaction in fast simulation times
    corecore