4 research outputs found

    Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    Get PDF
    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs

    A polyelectrolyte multilayer platform for investigating growth factor delivery modes in human liver cultures

    No full text
    Polyelectrolyte multilayers (PEMs) of chitosan and heparin are useful for mimicking growth factor (GF) binding to extracellular matrix (ECM) as in vivo. Here, we developed a PEM platform for delivering bound/adsorbed GFs to monocultures of primary human hepatocytes (PHHs) and PHH/non-parenchymal cell (NPC) co-cultures, which are useful for drug development and regenerative medicine. The effects of ECM protein coating (collagen I, fibronectin, and Matrigel®) and terminal PEM layer on PHH attachment/functions were determined. Then, heparin-terminated/fibronectin-coated PEMs were used to deliver varying concentrations of an adsorbed model GF, transforming growth factor β (TGFβ), to PHH monocultures while using soluble TGFβ delivery via culture medium as the conventional control. Soluble TGFβ delivery caused a severe, monotonic, and sustained downregulation of all PHH functions measured (albumin and urea secretions, cytochrome-P450 2A6 and 3A4 enzyme activities), whereas adsorbed TGFβ delivery caused transient upregulation of 3 out of 4 functions. Finally, functionally stable co-cultures of PHHs and 3T3-J2 murine embryonic fibroblasts were created on the heparin-terminated/fibronectin-coated PEMs modified with adsorbed TGFβ to elucidate similarities and differences in functional response relative to the monocultures. In conclusion, chitosan-heparin PEMs constitute a robust platform for investigating the effects of GF delivery modes on PHH monocultures and PHH/NPC co-cultures
    corecore