965 research outputs found
A geometrical angle on Feynman integrals
A direct link between a one-loop N-point Feynman diagram and a geometrical
representation based on the N-dimensional simplex is established by relating
the Feynman parametric representations to the integrals over contents of
(N-1)-dimensional simplices in non-Euclidean geometry of constant curvature. In
particular, the four-point function in four dimensions is proportional to the
volume of a three-dimensional spherical (or hyperbolic) tetrahedron which can
be calculated by splitting into birectangular ones. It is also shown that the
known formula of reduction of the N-point function in (N-1) dimensions
corresponds to splitting the related N-dimensional simplex into N rectangular
ones.Comment: 47 pages, including 42 pages of the text (in plain Latex) and 5 pages
with the figures (in a separate Latex file, requires axodraw.sty) a note and
three references added, minor problem with notation fixe
On the minimization of Dirichlet eigenvalues of the Laplace operator
We study the variational problem \inf \{\lambda_k(\Omega): \Omega\
\textup{open in}\ \R^m,\ |\Omega| < \infty, \ \h(\partial \Omega) \le 1 \},
where is the 'th eigenvalue of the Dirichlet Laplacian
acting in , \h(\partial \Omega) is the - dimensional
Hausdorff measure of the boundary of , and is the Lebesgue
measure of . If , and , then there exists a convex
minimiser . If , and if is a minimiser,
then is also a
minimiser, and is connected. Upper bounds are
obtained for the number of components of . It is shown that if
, and then has at most components.
Furthermore is connected in the following cases : (i) (ii) and (iii) and (iv) and
. Finally, upper bounds on the number of components are obtained for
minimisers for other constraints such as the Lebesgue measure and the torsional
rigidity.Comment: 16 page
Theoretical and Numerical Analysis of an Optimal Execution Problem with Uncertain Market Impact
This paper is a continuation of Ishitani and Kato (2015), in which we derived
a continuous-time value function corresponding to an optimal execution problem
with uncertain market impact as the limit of a discrete-time value function.
Here, we investigate some properties of the derived value function. In
particular, we show that the function is continuous and has the semigroup
property, which is strongly related to the Hamilton-Jacobi-Bellman
quasi-variational inequality. Moreover, we show that noise in market impact
causes risk-neutral assessment to underestimate the impact cost. We also study
typical examples under a log-linear/quadratic market impact function with
Gamma-distributed noise.Comment: 24 pages, 14 figures. Continuation of the paper arXiv:1301.648
An Optimal Execution Problem with Market Impact
We study an optimal execution problem in a continuous-time market model that
considers market impact. We formulate the problem as a stochastic control
problem and investigate properties of the corresponding value function. We find
that right-continuity at the time origin is associated with the strength of
market impact for large sales, otherwise the value function is continuous.
Moreover, we show the semi-group property (Bellman principle) and characterise
the value function as a viscosity solution of the corresponding
Hamilton-Jacobi-Bellman equation. We introduce some examples where the forms of
the optimal strategies change completely, depending on the amount of the
trader's security holdings and where optimal strategies in the Black-Scholes
type market with nonlinear market impact are not block liquidation but gradual
liquidation, even when the trader is risk-neutral.Comment: 36 pages, 8 figures, a modified version of the article "An optimal
execution problem with market impact" in Finance and Stochastics (2014
Tightness for a stochastic Allen--Cahn equation
We study an Allen-Cahn equation perturbed by a multiplicative stochastic
noise which is white in time and correlated in space. Formally this equation
approximates a stochastically forced mean curvature flow. We derive uniform
energy bounds and prove tightness of of solutions in the sharp interface limit,
and show convergence to phase-indicator functions.Comment: 27 pages, final Version to appear in "Stochastic Partial Differential
Equations: Analysis and Computations". In Version 4, Proposition 6.3 is new.
It replaces and simplifies the old propositions 6.4-6.
Calibration of optimal execution of financial transactions in the presence of transient market impact
Trading large volumes of a financial asset in order driven markets requires
the use of algorithmic execution dividing the volume in many transactions in
order to minimize costs due to market impact. A proper design of an optimal
execution strategy strongly depends on a careful modeling of market impact,
i.e. how the price reacts to trades. In this paper we consider a recently
introduced market impact model (Bouchaud et al., 2004), which has the property
of describing both the volume and the temporal dependence of price change due
to trading. We show how this model can be used to describe price impact also in
aggregated trade time or in real time. We then solve analytically and calibrate
with real data the optimal execution problem both for risk neutral and for risk
averse investors and we derive an efficient frontier of optimal execution. When
we include spread costs the problem must be solved numerically and we show that
the introduction of such costs regularizes the solution.Comment: 31 pages, 8 figure
Towards a quantitative phase-field model of two-phase solidification
We construct a diffuse-interface model of two-phase solidification that
quantitatively reproduces the classic free boundary problem on solid-liquid
interfaces in the thin-interface limit. Convergence tests and comparisons with
boundary integral simulations of eutectic growth show good accuracy for
steady-state lamellae, but the results for limit cycles depend on the interface
thickness through the trijunction behavior. This raises the fundamental issue
of diffuse multiple-junction dynamics.Comment: 4 pages, 2 figures. Better final discussion. 1 reference adde
Multiscale Random-Walk Algorithm for Simulating Interfacial Pattern Formation
We present a novel computational method to simulate accurately a wide range
of interfacial patterns whose growth is limited by a large scale diffusion
field. To illustrate the computational power of this method, we demonstrate
that it can be used to simulate three-dimensional dendritic growth in a
previously unreachable range of low undercoolings that is of direct
experimental relevance.Comment: 4 pages RevTex, 6 eps figures; substantial changes in presentation,
but results and conclusions remain the sam
Scaling anomalies in the coarsening dynamics of fractal viscous fingering patterns
We analyze a recent experiment of Sharon \textit{et al.} (2003) on the
coarsening, due to surface tension, of fractal viscous fingering patterns
(FVFPs) grown in a radial Hele-Shaw cell. We argue that an unforced Hele-Shaw
model, a natural model for that experiment, belongs to the same universality
class as model B of phase ordering. Two series of numerical simulations with
model B are performed, with the FVFPs grown in the experiment, and with
Diffusion Limited Aggregates, as the initial conditions. We observed
Lifshitz-Slyozov scaling at intermediate distances and very slow
convergence to this scaling at small distances. Dynamic scale invariance breaks
down at large distances.Comment: 4 pages, 4 eps figures; to appear in Phys. Rev.
Phase-Field Formulation for Quantitative Modeling of Alloy Solidification
A phase-field formulation is introduced to simulate quantitatively
microstructural pattern formation in alloys. The thin-interface limit of this
formulation yields a much less stringent restriction on the choice of interface
thickness than previous formulations and permits to eliminate non-equilibrium
effects at the interface. Dendrite growth simulations with vanishing solid
diffusivity show that both the interface evolution and the solute profile in
the solid are well resolved
- âŠ