81 research outputs found

    Judging Time-to-Passage of looming sounds: evidence for the use of distance-based information

    Get PDF
    Perceptual judgments are an essential mechanism for our everyday interaction with other moving agents or events. For instance, estimation of the time remaining before an object contacts or passes us is essential to act upon or to avoid that object. Previous studies have demonstrated that participants use different cues to estimate the time to contact or the time to passage of approaching visual stimuli. Despite the considerable number of studies on the judgment of approaching auditory stimuli, not much is known about the cues that guide listeners’ performance in an auditory Time-to-Passage (TTP) task. The present study evaluates how accurately participants judge approaching white-noise stimuli in a TTP task that included variable occlusion periods (portion of the presentation time where the stimulus is not audible). Results showed that participants were able to accurately estimate TTP and their performance, in general, was weakly affected by occlusion periods. Moreover, we looked into the psychoacoustic variables provided by the stimuli and analysed how binaural cues related with the performance obtained in the psychophysical task. The binaural temporal difference seems to be the psychoacoustic cue guiding participants’ performance for lower amounts of occlusion, while the binaural loudness difference seems to be the cue guiding performance for higher amounts of occlusion. These results allowed us to explain the perceptual strategies used by participants in a TTP task (maintaining accuracy by shifting the informative cue for TTP estimation), and to demonstrate that the psychoacoustic cue guiding listeners’ performance changes according to the occlusion period.This study was supported by: Bial FoundationGrant 143/14 (https://www.bial.com/en/bial_foundation.11/11th_symposium.219/ fellows_preliminary_results.235/fellows_ preliminary_results.a569.html); FCT PTDC/EEAELC/112137/2009 (https://www.fct.pt/apoios/projectos/consulta/vglobal_projecto?idProjecto=112137&idElemConcurso=3628); and COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Exploiting solar visible-range observations by inversion techniques: from flows in the solar subsurface to a flaring atmosphere

    Full text link
    Observations of the Sun in the visible spectral range belong to standard measurements obtained by instruments both on the ground and in the space. Nowadays, both nearly continuous full-disc observations with medium resolution and dedicated campaigns of high spatial, spectral and/or temporal resolution constitute a holy grail for studies that can capture (both) the long- and short-term changes in the dynamics and energetics of the solar atmosphere. Observations of photospheric spectral lines allow us to estimate not only the intensity at small regions, but also various derived data products, such as the Doppler velocity and/or the components of the magnetic field vector. We show that these measurements contain not only direct information about the dynamics of solar plasmas at the surface of the Sun but also imprints of regions below and above it. Here, we discuss two examples: First, the local time-distance helioseismology as a tool for plasma dynamic diagnostics in the near subsurface and second, the determination of the solar atmosphere structure during flares. The methodology in both cases involves the technique of inverse modelling.Comment: 29 pages, 15 figures. Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    Soybean Trihelix Transcription Factors GmGT-2A and GmGT-2B Improve Plant Tolerance to Abiotic Stresses in Transgenic Arabidopsis

    Get PDF
    BACKGROUND:Trihelix transcription factors play important roles in light-regulated responses and other developmental processes. However, their functions in abiotic stress response are largely unclear. In this study, we identified two trihelix transcription factor genes GmGT-2A and GmGT-2B from soybean and further characterized their roles in abiotic stress tolerance. FINDINGS:Both genes can be induced by various abiotic stresses, and the encoded proteins were localized in nuclear region. In yeast assay, GmGT-2B but not GmGT-2A exhibits ability of transcriptional activation and dimerization. The N-terminal peptide of 153 residues in GmGT-2B was the minimal activation domain and the middle region between the two trihelices mediated the dimerization of the GmGT-2B. Transactivation activity of the GmGT-2B was also confirmed in plant cells. DNA binding analysis using yeast one-hybrid assay revealed that GmGT-2A could bind to GT-1bx, GT-2bx, mGT-2bx-2 and D1 whereas GmGT-2B could bind to the latter three elements. Overexpression of the GmGT-2A and GmGT-2B improved plant tolerance to salt, freezing and drought stress in transgenic Arabidopsis plants. Moreover, GmGT-2B-transgenic plants had more green seedlings compared to Col-0 under ABA treatment. Many stress-responsive genes were altered in GmGT-2A- and GmGT-2B-transgenic plants. CONCLUSION:These results indicate that GmGT-2A and GmGT-2B confer stress tolerance through regulation of a common set of genes and specific sets of genes. GmGT-2B also affects ABA sensitivity

    Estimating Contact Process Saturation in Sylvatic Transmission of Trypanosoma cruzi in the United States

    Get PDF
    Although it has been known for nearly a century that strains of Trypanosoma cruzi, the etiological agent for Chagas' disease, are enzootic in the southern U.S., much remains unknown about the dynamics of its transmission in the sylvatic cycles that maintain it, including the relative importance of different transmission routes. Mathematical models can fill in gaps where field and lab data are difficult to collect, but they need as inputs the values of certain key demographic and epidemiological quantities which parametrize the models. In particular, they determine whether saturation occurs in the contact processes that communicate the infection between the two populations. Concentrating on raccoons, opossums, and woodrats as hosts in Texas and the southeastern U.S., and the vectors Triatoma sanguisuga and Triatoma gerstaeckeri, we use an exhaustive literature review to derive estimates for fundamental parameters, and use simple mathematical models to illustrate a method for estimating infection rates indirectly based on prevalence data. Results are used to draw conclusions about saturation and which population density drives each of the two contact-based infection processes (stercorarian/bloodborne and oral). Analysis suggests that the vector feeding process associated with stercorarian transmission to hosts and bloodborne transmission to vectors is limited by the population density of vectors when dealing with woodrats, but by that of hosts when dealing with raccoons and opossums, while the predation of hosts on vectors which drives oral transmission to hosts is limited by the population density of hosts. Confidence in these conclusions is limited by a severe paucity of data underlying associated parameter estimates, but the approaches developed here can also be applied to the study of other vector-borne infections

    Ecological phytochemistry of Cerrado (Brazilian savanna) plants

    Get PDF
    The Cerrado (the Brazilian savanna) is one of the vegetation formations of great biodiversity in Brazil and it has experienced strong deforestation and fragmentation. The Cerrado must contain at least 12,000 higher plant species.We discuss the ecological relevance of phytochemical studies carried out on plants from the Cerrado, including examples of phytotoxicity, antifungal, insecticidal and antibacterial activities. The results have been classified according to activity and plant family. The most active compounds have been highlighted and other activities are discussed. A large number of complex biochemical interactions occur in this system. However, only a small fraction of the species has been studied from the phytochemical viewpoint to identify the metabolites responsible for these interactions
    corecore