3,742 research outputs found

    On Gravity localization under Lorentz Violation in warped scenario

    Full text link
    Recently Rizzo studied the Lorentz Invariance Violation (LIV) in a brane scenario with one extra dimension where he found a non-zero mass for the four-dimensional graviton. This leads to the conclusion that five-dimensional models with LIV are not phenomenologically viable. In this work we re-examine the issue of Lorentz Invariance Violation in the context of higher dimensional theories. We show that a six-dimensional geometry describing a string-like defect with a bulk-dependent cosmological constant can yield a massless 4D graviton, if we allow the cosmological constant variation along the bulk, and thus can provides a phenomenologically viable solution for the gauge hierarchy problem.Comment: 13 pages, 2 figures. To appear in Physics Letters

    Climate change and human migration: managing the cascade effects initiated by natural disasters

    Get PDF
    The potential links between climate change, human migration and conflict have been receiving an increasing amount of attention since the turn of the century. Up-to-date reports that address the most recent understanding of climate change and environmental hazards indicate that humans have undeniably contributed to the rising global temperature and will continue to do so if lower pollution thresholds are not maintained. While this enacts a multitude of physical, biological, chemical, and societal changes, it is imperative to analyze and address the impact of climate change on human migration trends. Human migrants face several types of problems ranging from environmental issues related to climate change (sea-level rise, more frequent and intense storms and floods, drought, wildfires, etc.), to conflicts from physical migration into neighboring towns, cities, regions, or countries. These types of physical migration that are climate change driven, which can be referred to as “adaptation migration” can be capable of snowballing from a human-to-environment issue into a human-to-human conflict; usually involving some type of violence or political discrimination/persecution. The aim of this study is to analyze how climate change is impacting human migration trends, the possible percolating effects that can result from human migration, and how these factors have influenced and will continue to influence governments and governance in the coastal area. The information in this report will be able to provide a greater understanding of adaptation migration through the use of differential equations, how these trends can be modeled, and how Game Theory can be used as a strategic tool for policymakers moving forward.I would like to thank the WACOMA program and all of its coordinators, past and present, as they have all played an essential role in helping not only myself, but all of the students develop into the people we are today. Thank you all for everything you have done throughout this entire process

    Hemodynamic study in a real intracranial aneurysm: an in vitro and in silico approach

    Get PDF
    Mestrado de dupla diplomação com o Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - Cefet/RJIntracranial aneurysm (IA) is a cerebrovascular disease with high rates of mortality and morbidity when it ruptures. It is known that changes in the intra-aneurysmal hemodynamic load play a significant factor in the development and rupture of IA. However, these factors are not fully understood. In this sense, the main objective of this work is to study the hemodynamic behavior during the blood analogues flow inside an AI and to determine its influence on the evolution of this pathology. To this end, experimental and numerical studies were carried out, using a real AI model obtained using computerized angiography. In the experimental approach, it was necessary, in the initial phase, to develop and manufacture biomodels from medical images of real aneurysms. Two techniques were used to manufacture the biomodels: rapid prototyping and gravity casting. The materials used to obtain the biomodels were of low cost. After manufacture, the biomodels were compared to each other for their transparency and final structure and proved to be suitable for testing flow visualizations. Numerical studies were performed with the aid of the Ansys Fluent software, using computational fluid dynamics (CFD), using the finite volume method. Subsequently, flow tests were performed experimentally and numerically using flow rates calculated from the velocity curve of a patient's doppler test. The experimental and numerical tests, in steady-state, made it possible to visualize the three-dimensional behavior of the flow inside the aneurysm, identifying the vortex zones created throughout the cardiac cycle. Correlating the results obtained in the two analyzes, it was possible to identify that the areas of vortexes are characterized by low speed and with increasing the fluid flow, the vortexes are positioned closer to the wall. These characteristics are associated with the rupture of an intracranial aneurysm. There was also a good qualitative correlation between numerical and experimental results.O aneurisma intracraniano (AI) é uma patologia cerebrovascular com altas taxas de mortalidade e morbidade quando se rompe. Sabe-se que alterações na carga hemodinâmica intra-aneurismática exerce um fator significativo no desenvolvimento e ruptura de AI, porém, esses fatores não estão totalmente compreendidos. Nesse sentido, o objetivo principal deste trabalho é o de estudar o comportamento hemodinâmico durante o escoamento de fluidos análogos do sangue no interior de um AI e determinar a sua influência na evolução da patologia. Para tal, foram realizados estudos experimentais e numéricos, utilizando um modelo de AI real obtido por meio de uma angiografia computadorizada. Na abordagem experimental foi necessário, na fase inicial, desenvolver e fabricar biomodelos a partir de imagens médicas de um aneurisma real. No fabrico dos biomodelos foram utilizadas duas técnicas: a prototipagem rápida e o vazamento por gravidade. Os materiais utilizados para a obtenção dos biomodelos foram de baixo custo. Após a fabricação, os biomodelos foram comparados entre si quanto à sua transparência e estrutura final e verificou-se serem adequados para testes de visualizações do fluxo. Os estudos numéricos foram realizados com recurso ao software Ansys Fluent, utilizando a dinâmica dos fluidos computacional (CFD), através do método dos volumes finitos. Posteriormente, foram realizados testes de escoamento experimentais e numéricos, utilizando caudais determinados a partir da curva de velocidades do ensaio doppler de um paciente. Os testes experimentais e numéricos, em regime permanente, possibilitaram a visualização do comportamento tridimensional do fluxo no interior do aneurisma, identificando as zonas de vórtices criadas ao longo do ciclo cardíaco. Correlacionando os resultados obtidos nas duas análises, foi possível identificar que as áreas de vórtices são caracterizadas por uma baixa velocidade e com o aumento do caudal os vórtices posicionam-se mais próximos da parede. Essas características apresentadas estão associadas com a ruptura de aneurisma intracraniano. Verificou-se, também, uma boa correlação qualitativa entre os resultados numéricos e experimentais

    Interval tree clocks: a logical clock for dynamic systems

    Get PDF
    Lecture Notes in Computer Science 5401, 2008Causality tracking mechanisms, such as vector clocks and version vectors, rely on mappings from globally unique identifiers to integer counters. In a system with a well known set of entities these ids can be preconfigured and given distinct positions in a vector or distinct names in a mapping. Id management is more problematic in dynamic systems, with large and highly variable number of entities, being worsened when network partitions occur. Present solutions for causality tracking are not appropriate to these increasingly common scenarios. In this paper we introduce Interval Tree Clocks, a novel causality tracking mechanism that can be used in scenarios with a dynamic number of entities, allowing a completely decentralized creation of processes/replicas without need for global identifiers or global coordination. The mechanism has a variable size representation that adapts automatically to the number of existing entities, growing or shrinking appropriately. The representation is so compact that the mechanism can even be considered for scenarios with a fixed number of entities, which makes it a general substitute for vector clocks and version vectors

    Version stamps-decentralized version vectors

    Get PDF
    Version vectors and their variants play a central role in update tracking in optimistic distributed systems. Existing mechanisms for a variable number of participants use a mapping from identities to integers, and rely on some form of global configuration or distributed naming protocol to assign unique identifiers to each participant. These approaches are incompatible with replica creation under arbitrary partitions, a typical mode of operation in mobile or poorly connected environments. We present an update tracking mechanism that overcomes this limitation; it departs from the traditional mapping and avoids the use of integer counters, while providing all the functionality of version vectors in what concerns version tracking

    Particle Swarm Optimization: A Powerful Technique for Solving Engineering Problems

    Get PDF
    This chapter will introduce the particle swarm optimization (PSO) algorithm giving an overview of it. In order to formally present the mathematical formulation of PSO algorithm, the classical version will be used, that is, the inertial version; meanwhile, PSO variants will be summarized. Besides that, hybrid methods representing a combination of heuristic and deterministic optimization methods are going to be presented as well. Before the presentation of these algorithms, the reader will be introduced to the main challenges when approaching PSO algorithm. Two study cases of diverse nature, one regarding the PSO in its classical version and another one regarding the hybrid version, are provided in this chapter showing how handful and versatile it is to work with PSO. The former case is the optimization of a mechanical structure in the nuclear fuel bundle and the last case is the optimization of the cost function of a cogeneration system using PSO in a hybrid optimization. Finally, a conclusion is presented
    corecore