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Abstract. Causality tracking mechanisms, such as vector clocks and version
vectors, rely on mappings from globally unique identifiers to integer counters.
In a system with a well known set of entities these ids can be preconfigured and
given distinct positions in a vector or distinct names in a mapping. Id management
is more problematic in dynamic systems, with large and highly variable number
of entities, being worsened when network partitions occur. Present solutions for
causality tracking are not appropriate to these increasingly common scenarios. In
this paper we introduce Interval Tree Clocks, a novel causality tracking mecha-
nism that can be used in scenarios with a dynamic number of entities, allowing
a completely decentralized creation of processes/replicas without need for global
identifiers or global coordination. The mechanism has a variable size represen-
tation that adapts automatically to the number of existing entities, growing or
shrinking appropriately. The representation is so compact that the mechanism can
even be considered for scenarios with a fixed number of entities, which makes it
a general substitute for vector clocks and version vectors.

Key words: Causality, logical clock, version vectors, vector clocks, dynamic
systems.

1 Introduction

Ever since causality was introduced in distributed systems [12], it has played an impor-
tant role in the modeling of distributed computations. In the absence of global clocks,
causality remains as a means to reason about the order of distributed events. In order to
be useful, causality is implemented by concrete mechanisms, such as Vector Clocks [7,
16] and Version Vectors [18], where a compressed representation of the sets of events
observed by processes or replicas is kept.

These mechanisms are based on a mapping from a globally unique identifier to an
integer counter, so that each entity (i.e. process or replica) keeps track of how many
events it knows from each other entity. A special and common case is when the number
of entities is known: here ids can be integers, and a vector of counters can be used.

Nowadays, distributed systems are much less static and predictable than those tra-
ditionally considered when the basic causality tracking mechanisms were created. In
dynamic distributed systems [17], the number of active entities varies during the sys-
tem execution and in some settings, such as in peer-to-peer deployments, the level of
change, due to churn, can be extremely high.
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Causality tracking in dynamic settings is not new [8] and several proposals analyzed
the dynamic creation and retirement of entities [21, 9, 20, 13, 2]. However, in most cases
localized retirement is not supported: all active entities must agree before an id can
be removed [21, 9, 20] and a single unreachable entity will stall garbage collection.
Localized retirement is only partially supported in [13], while [2] has full support but
the mechanism itself exhibits an unreasonable structural growth that its practical use is
compromised [3].

This paper addresses causality tracking in dynamic settings and introduces Interval
Tree Clocks (ITC), a novel causality tracking mechanism that generalizes both Version
Vectors and Vector Clocks. It does not require global ids but is able to create, retire and
reuse them autonomously, with no need for global coordination; any entity can fork a
new one and the number of entities can be reduced by joining arbitrary pairs of entities;
stamps tend to grow or shrink, adapting to the dynamic nature of the system. Contrary to
some previous approaches, ITC is suitable for practical uses, as the space requirement
scales well with the number of entities and grows modestly over time.

In the next section we review the related work. Section 3 introduces a model based
on fork, event and join operations that factors out a kernel for the description of causal-
ity systems. Section 4 builds on the identified core operations and introduces a general
framework that expresses the properties that must be met by concrete causality tracking
mechanisms. Section 5 introduces the ITC mechanism and correctness argument un-
der the framework. Before conclusions, in Section 7, we present in Section 6 a simple
simulation based assessment of the space requirements of the mechanism.

2 Related Work

After Lamport’s description of causality in distributed system [12], subsequent work in-
troduced the basic mechanisms and theory [18, 7, 16, 5]. We refer the interested reader
to the survey in [22] and to the historical notes in [4]. After an initial focus on message
passing systems, recent developments have improved causality tracking for replicated
data: they addressed efficient coding for groups of related objects [14]; bounded repre-
sentation of version vectors [1]; and the semantics of reconciliation [10].

Fidge introduces in [8] a model with a variable number of process ids. In this model
process ids are assumed globally unique and are gradually introduced by process spawn-
ing events. No garbage collection of ids is performed when processes terminate.

Garbage collection of terminated ids requires additional meta-data in order to as-
sess that all active entities already witnessed the termination; otherwise, ids cannot be
safely removed from the vectors. This approach is used in [9, 21] together with the as-
sumption of globally unique ids. In [20] the assumption of global ids is dropped and
each entity is able to produce a globally unique id from local information. A typical
weakness in these systems is twofold: terminated ids cannot be reused; and garbage
collection is hampered by even a single unreachable entity. In addition, when garbage
collection cannot terminate, the associated meta-data overhead cannot be freed. Since
this overhead is substantial, when the likelihood of non termination is high, it can be
more efficient not to garbage collect and keep the inactive ids.



The mechanism described in [13] provides local retirement of ids but only for re-
stricted termination patterns (a process can only be retired by joining a direct ancestor);
moreover, the use of global ids is required.

Our own work in [2] introduced localized creation and retirements of ids and pre-
sented Version Stamps, a dynamic substitute to version vectors. Although still of theo-
retical interest as it does not use counters, and although it inspired the id management
technique used in ITC, the technique was later found out to exhibit very adverse growth
in common scenarios [3]. The id management technique used in version stamps shares
many properties with credit management techniques in termination detection algorithms
[15, 11].

In order to control version vector growth, in Dynamo [6] old inactive entries are
garbage collected. Although the authors tune it so that in production systems errors are
unlikely to be introduced, in general this can lead to resurgence of old updates. Mecha-
nisms like ITC may help in avoiding the need for these aggressive pruning solutions.

3 Fork-Event-Join Model

Causality tracking mechanisms can be modeled by a set of core operations: fork, event
and join, that act on stamps (logical clocks) whose structure is a pair (i, e), formed by
an id and an event component that encodes causally known events. Fidge used in [8] a
model that bears some resemblance, although not making explicit the id component.

Causality is characterized by a partial order over the event components, (E,≤). In
version vectors, this order is the pointwise order on the event component: e ≤ e′ iff
∀k. e[k] ≤ e′[k]. In causal histories [22], where event components are sets of event ids,
the order is defined by set inclusion.

fork The fork operation allows the cloning of the causal past of a stamp, resulting in
a pair of stamps that have identical copies of the event component and distinct ids;
fork(i, e) = ((i1, e), (i2, e)) such that i2 6= i1. Typically, i = i1 and i2 is a new
id. In some systems i2 is obtained from an external source of unique ids, e.g. MAC
addresses. In contrast, in Bayou [20] i2 is a function of the original stamp f((i, e));
consecutive forks are assigned distinct ids since an event is issued to increment a
counter after each fork.
peek A special case of fork when it is enough to obtain an anonymous stamp (0, e),

with “null” identity, than can be used to transmit causal information but cannot
register events, peek((i, e)) = ((i, e), (0, e)). Anonymous stamps are typically
used to create messages or as inactive copies for later debugging of distributed
executions.

event An event operation adds a new event to the event component, so that if (i, e′)
results from event((i, e)) the causal ordering is such that e < e′. This action does
a strict advance in the partial order such that e′ is not dominated by any other entity
and does not dominate more events than needed: for any other event component
x in the system, e′ 6≤ x and when x < e′ then x ≤ e. In version vectors the
event operation increments a counter associated to the identity in the stamp: ∀k 6=
i. e′[k] = e[k] and e′[i] = e[i] + 1.



join This operation merges two stamps, producing a new one. If join((i1, e1), (i2, e2))
= (i3, e3), the resulting event component e3 should be such that e1 ≤ e3 and
e2 ≤ e3. Also, e3 should not dominate more that either e1 and e2 did. This is
obtained by the order theoretical join, e3 = e1te2, that must be defined for all pairs;
i.e. the order must form a join semilattice. In causal histories the join is defined by
set union, and in version vectors it is obtained by the pointwise maximum of the
two vectors.
The identity should be based on the provided ones, i3 = f(i1, i2) and kept globally
unique (with the exception of anonymous ids). In most systems this is obtained by
keeping only one of the ids, but if ids are to be reused it should depend upon and
incorporate both [2].
When one stamp is anonymous, join can also model message reception, where
join((i, e1), (0, e2)) = (i, e1 t e2). When both ids are defined, the join can be
used to terminate an entity and collect its causal past. Also notice that joins can
be applied when both stamps are anonymous, modeling in-transit aggregation of
messages.
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Fig. 1: Core operations.

Classic operations can be described as a composition of these core operations:

send This operation is the atomic composition of event followed by peek. E.g. in vec-
tor clock systems, message sending is modeled by incrementing the local counter
and then creating a new message.

receive A receive is the atomic composition of join followed by event. E.g. in vector
clocks taking the pointwise maximum is followed by an increment of the local
counter.

sync A sync is the atomic composition of join followed by fork. E.g. In version vector
systems and in bounded version vectors [1] it models the atomic synchronization
of two replicas.

Figure 2 depicts graphical representations of these composite operations, but other
composite operations could also be easily described using the same set of core opera-
tions. For instance, a message multicast could be modeled as the atomic composition of
an event operation followed by a sequence of peek operations.
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Fig. 2: Some composite operations.

Traditional descriptions assume a starting number of entities. This can be simulated
by starting from an initial seed stamp and forking several times until the required num-
ber of entities is reached.

4 Function Space Based Clock Mechanisms

In this section we present a general framework which can be used to explain and in-
stantiate concrete causality tracking mechanisms, such as our own ITC presented in the
next section. Here stamps are described in terms of functions and some invariants are
presented towards ensuring correctness. Actual mechanisms can be seen as finite en-
codings of such functions. Correctness of each mechanism will follow directly from the
correctness of the encoding and from respecting the corresponding semantics and con-
ditions to be met by each operation. In the following we will make use of the standard
pointwise sum, product, scaling, partial ordering and join of functions:

(f + g)(x) .= f(x) + g(x),

(f · g)(x) .= f(x) · g(x),

(n · g)(x) .= n · g(x),

f ≤ g .= ∀x. f(x) ≤ g(x),

(f t g)(x) .= f(x) t g(x),

and of a function 0 that maps all elements to 0:

0 .= λx. 0.

A stamp will consist of a pair (i, e): the identity and the event components, both
functions from some arbitrary domain to natural numbers. The identity component is a



characteristic function (maps elements to {0, 1}) that defines the set of elements in the
domain available to inflate (“increment”) the event function when an event occurs. We
chose to use the characteristic function instead of the set as it leads to better notation.
The essential point towards ensuring a correct tracking of causality is to be able to
inflate the mapping of some element which no other entity (process or replica) has
access to1. This means each entity having an identity which maps to 1 some element
which is mapped to 0 in all other entities. This is expressed by the following invariant
over the identity components of all entities:

∀i. (i ·
⊔
i′ 6=i

i′) 6= i.

We adopt a less general but more useful invariant, as it can be maintained by local
operations without access to global knowledge. It consists of having disjointness of the
parts of the domain that are mapped to 1 in each entity; i.e. non-overlapping graphs for
any pair of id functions.

∀i1 6= i2. i1 · i2 = 0.

Comparison of stamps is made through the event component:

(i1, e1) ≤ (i2, e2) .= e1 ≤ e2.

Join takes two stamps, and returns a stamp that causally dominates both (therefore,
the event component is a join of the event components), and has the elements from both
identities available for future event accounting:

join((i1, e1), (i2, e2)) .= (i1 + i2, e1 t e2).

Fork can be any function that takes a stamp and returns two stamps which keep the
same event component, but split between them the available elements in the identity;
i.e. any function:

fork((i, e)) .= ((i1, e), (i2, e)) subject to i1 + i2 = i and i1 · i2 = 0.

Peek is a special case of fork, which results in one anonymous stamp with 0 identity
and another which keeps all the elements in the identity to itself:

peek((i, e)) .= ((i, e), (0, e)).

Event can be any function that takes a stamp and returns another with the same
identity and with an event component inflated on any arbitrary set of elements available
in the identity:

event((i, e)) = (i, e+ f · i) for any f such that f · i > 0.

An event cannot be applied to an anonymous stamp as no element in the domain is
available to be inflated.

1 If this property is not met it can still be possible to form an order that is compatible with
causality, but where some concurrent events appear as ordered. This is the case in Lamport
clocks [12] and in plausible clocks [23] where the stated invariant does not hold. A Lamport
clock can be modeled by having the same identity in all entities.



5 Interval Tree Clocks

We now describe Interval Tree Clocks, a novel clock mechanism that can be used in sce-
narios with a dynamic number of entities, allowing a completely decentralized creation
of processes/replicas without need for global identifiers. The mechanism has a variable
size representation that adapts automatically to the number of existing entities, growing
or shrinking appropriately. There are two essential differences between ITC and classic
clock mechanisms, from the point of view of our function space framework:

– in classic mechanisms each entity uses a fixed, pre-defined function for id; in ITC
the id component of entities is manipulated to adapt to the dynamic number of
entities;

– classic mechanisms are based on functions over a discrete and typically finite do-
main; ITC is based on functions over a continuous infinite domain (R) with em-
phasis on the interval [0, 1); this domain can be split into an arbitrary number of
subintervals as needed.

The idea is that each entity has available, in the id, a set of intervals that it can use to
inflate the event component and to give to the successors when forking; a join operation
joins the sets of intervals. Each interval results from successive partitions of [0, 1) into
equal subintervals; the set of intervals is described by a binary tree structure. Another
binary tree structure is also used for the event component, but this time to describe a
mapping of intervals to integers. To describe the mechanism in terms of functions, it is
useful to define a unit pulse function2:

1 .= λx.

{
1 x ≥ 0 ∧ x < 1,
0 x < 0 ∨ x ≥ 1.

The id component is an id tree with the recursive form (where i, i1, i2 range over id
trees):

i ::= 0 | 1 | (i1, i2).

We define a semantic function for the interpretation of id trees as functions:

J0K = 0

J1K = 1

J(i1, i2)K = λx. Ji1K(2x) + Ji2K(2x− 1).

These functions can be 1 for some subintervals of [0, 1) and 0 otherwise. For an id
(i1, i2), the functions corresponding to the two subtrees are transformed so as to be non-
zero in two non-overlapping subintervals: i1 in the interval [0, 1/2) and i2 in the interval
[1/2, 1). As an example, (1, (0, 1)) represents the function λx.1(2x) + (λx.1(2x −

2 In this paper we use the lambda calculus notation for defining unary functions: a function is
anonymously defined by a lambda expression which expresses its action on its argument. For
instance, the “increment” function f such that f(x) = x+ 1 would be expressed as λx. x+ 1



1))(2x − 1). We will also use a graphical notation, which is based on the graph of the
function over [0, 1). Examples:

(1, (0, 1)) ∼
((0, (1, 0)), (1, 0)) ∼

The event component is a binary event tree with non-negative integers in nodes;
using e, e1, e2 to range over event trees and n over non-negative integers:

e ::= n | (n, e1, e2).

We define a semantic function for the interpretation of these trees as functions:

JnK = n · 1
J(n, e1, e2)K = n · 1 + λx. Je1K(2x) + Je2K(2x− 1).

This means that the value for an element in some subinterval is the sum of a base value,
common for the whole interval, plus a relative value from the corresponding subtree.
We will also use a graphical notation for the event component; again, it is based on the
graph of the function, obtained by “stacking” the corresponding parts. An example:

(1, 2, (0, (1, 0, 2), 0)) ∼

A stamp in ITC is a pair (i, e), where i is an id tree and e an event tree; we will also use
a graphical notation based on stacking the two components:

(((0, (1, 0)), (1, 0)), (1, 2, (0, (1, 0, 2), 0))) ∼

ITC makes use what we call the seed stamp, (1, 0), from which we can fork as
desired to obtain an initial configuration.

5.1 An Example

We now present an example to illustrate the intuition behind the mechanism, showing a
run with a dynamic number of entities in the fork-event-join model. The run starts by a
single entity, with the seed stamp, which forks into two; one of these suffers one event
and forks; the other suffers two events. At this point there are three entities. Then, one
entity suffers an event while the remaining two synchronize by doing a join followed
by a fork.



The example shows how ITC adapts to the number of entities and allows simplifi-
cations to occur upon joins or events. While the first two forks had to split a node in
the id tree, the third one makes use of the two available subtrees. The final join leads
to a simplification in the id by merging two subtrees. It can be seen that each event
always inflates the event tree in intervals available in the id. The event after the final
join managed to perform an inflation in a way such that the resulting event function is
represented by a single integer.

5.2 Normal Form

There can be several equivalent representations for a given function. ITC is conceived
so as to keep stamps in a normal form, for the representations of both id and event
functions. This is important not only for having compact representations but also to
allow simple definitions of the operations on stamps (fork, event, join) as shown below.
As an example, for the unit pulse, we have:

1 ∼ 1 ≡ (1, 1) ≡ (1, (1, 1)) ≡ ((1, 1), 1) ≡ . . .

This means that, if after a join the resulting id is (1, (1, 1)), we can simplify it to 1.
Normalization of the id component can be obtained by applying the following function
when building the id tree recursively:

norm((0, 0)) = 0,
norm((1, 1)) = 1,

norm(i) = i.

The event component can be also normalized, preserving its interpretation as a func-
tion. Two examples:

(2, 1, 1) ∼ ≡ ∼ 3,

(2, (2, 1, 0), 3) ∼ ≡ ∼ (4, (0, 1, 0), 1).

To normalize the event component we will make use of the following operators to
“lift” or “sink” a tree:

n↑m = n+m,

(n, e1, e2)↑m = (n+m, e1, e2),
n↓m = n−m,

(n, e1, e2)↓m = (n−m, e1, e2).

Normalization of the event component can be obtained by applying the following
function when building a tree recursively (where m and n range over integers and e1
and e2 over normalized event trees) :

norm(n) = n,

norm((n,m,m)) = n+m,

norm((n, e1, e2)) = (n+m, e1↓m, e2↓m), where m = min(min(e1),min(e2)),



where min applied to a tree returns the minimum value of the corresponding function
in the range [0, 1):

min(e) = min
x∈[0,1)

JeK(x),

which can be obtained by the recursive function over event trees:

min(n) = n,

min((n, e1, e2)) = n+ min(min(e1),min(e2)),

or more simply, assuming the event tree is normalized:

min(n) = n,

min((n, e1, e2)) = n,

which explores the property that in a normalized event tree, one of the subtrees has
minimum equal to 0. We will also make use of the analogous max function over event
trees that returns the maximum value of the corresponding function in the range [0, 1),
and can be obtained by the recursive function:

max(n) = n,

max((n, e1, e2)) = n+ max(max(e1),max(e2)).

5.3 Operations over ITC

We now present the operations on ITC for the fork-event-join model. They are defined
so as to respect the operations and invariants from the function space based framework
presented in the previous section. All the functions below take as input and give as result
stamps in the normal form.

Comparison Comparison of ITC can be derived from the pointwise comparison of the
corresponding functions:

(i1, e1) ≤ (i2, e2) .= Je1K ≤ Je2K.

It is trivial to see that this can be computed through a recursive function over nor-
malized event trees; i.e. (i1, e1) ≤ (i2, e2) ⇐⇒ leq(e1, e2), with leq defined as
(where l and r range over the “left” and “right” subtrees):

leq(n1, n2) = n1 ≤ n2,

leq(n1, (n2, l2, r2)) = n1 ≤ n2,

leq((n1, l1, r1), n2) = n1 ≤ n2 ∧ leq(l1↑n1 , n2) ∧ leq(r1↑n1 , n2),
leq((n1, l1, r1), (n2, l2, r2)) = n1 ≤ n2 ∧ leq(l1↑n1 , l2↑n2) ∧ leq(r1↑n1 , r2↑n2).



Fork Forking preserves the event component, and must split the id in two parts whose
corresponding functions do not overlap and give the original one when added.

fork(i, e) .= ((i1, e), (i2, e)), where (i1, i2) = split(i),

for a function split such that:

(i1, i2) = split(i) =⇒ Ji1K× Ji2K = 0 ∧ Ji1K + Ji2K = JiK.

This is satisfied naturally using the following recursive function over id trees, as the two
subtrees of an id component always represent functions that do not overlap:

split(0) = (0, 0),
split(1) = ((1, 0), (0, 1)),

split((0, i)) = ((0, i1), (0, i2)), where (i1, i2) = split(i),
split((i, 0)) = ((i1, 0), (i2, 0)), where (i1, i2) = split(i),

split((i1, i2)) = ((i1, 0), (0, i2))

Join Joining two entities is made by summing the corresponding id functions and mak-
ing a join of the corresponding event functions:

join((i1, e1), (i2, e2)) .= (sum(i1, i2), join(e1, e2)),

for a sum function over identities and a join function over event trees such that:

Jsum(i1, i2)K = Ji1K + Ji2K,
Jjoin(e1, e2)K = Je1K t Je2K.

The sum function that respects the above condition and also produces a normalized
id is:

sum(0, i) = i,

sum(i, 0) = i,

sum((l1, r1), (l2, r2)) = norm((sum(l1, l2), sum(r1, r2))).

Likewise, the join function over event trees, producing a normalized event tree is:

join(n1, n2) = max(n1, n2),
join(n1, (n2, l2, r2)) = join((n1, 0, 0), (n2, l2, r2)),
join((n1, l1, r1), n2) = join((n1, l1, r1), (n2, 0, 0)),

join((n1, l1, r1), (n2, l2, r2)) = join((n2, l2, r2), (n1, l1, r1)), if n1 > n2,

join((n1, l1, r1), (n2, l2, r2)) = norm((n1, join(l1, l2↑n2−n1), join(r1, r2↑n2−n1))).



Event The event operation is substantially more complex than the others. While fork
and join have a simple natural definition, event has a larger freedom of implementation
while respecting the condition:

event((i, e)) = (i, e′), subject to Je′K = JeK + f · JiK for any f such that f · JiK > 0.

Event cannot be applied to anonymous stamps; it has the precondition that the id is non-
null; i.e. i 6= 0. We can use any subset of the available id to inflate the event function.
The freedom of which part to inflate is explored in ITC so as to simplify the event tree.
Considering the final event in our larger example:

The event operation was able to fill the missing part in a tree so as to allow its
simplification to a single integer. In general, the event operation can use several parts
of the id, and may simplify several subtrees simultaneously. The operation performs all
simplifications in the event tree that are possible given the id tree. If some simplification
is possible (which means the corresponding function was inflated), the resulting tree is
returned; otherwise another procedure is applied, that “grows” some subtree, preferably
only incrementing an integer if possible. The event operation is defined resorting to
these two functions (fill and grow) defined below:

event(i, e) =

{
(i,fill(i, e)) if fill(i, e) 6= e,

(i, e′) otherwise, where (e′, c) = grow(i, e).

Fill either succeeds in doing one or more simplifications, or returns an unmodified
tree; it never increments an integer that would not lead to simplifying the tree:

fill(0, e) = e,

fill(1, e) = max(e),
fill(i, n) = n,

fill((1, ir), (n, el, er)) = norm((n,max(max(el),min(e′r)), e′r)),
where e′r = fill(ir, er),

fill((il, 1), (n, el, er)) = norm((n, e′l,max(max(er),min(e′l)))),
where e′l = fill(il, el),

fill((il, ir), (n, el, er)) = norm((n, fill(il, el),fill(ir, er))).

In the following example, fill is unable to perform any simplification and grow is
used. From the two candidate inflations shown in light grey, the one chosen requires a
simple integer increment, while the other would require expanding a node:



Grow performs a dynamic programming based optimization to choose the inflation
that can be performed, given the available id tree, so as to minimize the cost of the event
tree growth. It is defined recursively, returning the new event tree and cost, so that:

– incrementing an integer is preferable over expanding an integer to a tuple;
– to disambiguate, an operation near the root is preferable to one farther away.

grow(1, n) = (n+ 1, 0),
grow(i, n) = (e′, c+N), where (e′, c) = grow(i, (n, 0, 0)),

and N is some large constant,
grow((0, ir), (n, el, er)) = ((n, el, e

′
r), cr + 1), where (e′r, cr) = grow(ir, er),

grow((il, 0), (n, el, er)) = ((n, e′l, er), cl + 1), where (e′l, cl) = grow(il, el),

grow((il, ir), (n, el, er)) =

{
((n, e′l, er), cl + 1) if cl < cr,

((n, el, e
′
r), cr + 1) if cl ≥ cr,

where (e′l, cl) = grow(il, el) and (e′r, cr) = grow(ir, er).

The definition makes use of a constant N that should be greater than the maximum
tree depth that arises. This is a practical choice, to have the cost as a simple integer.
We could avoid it by having the cost as a pair under lexicographic order, but it would
“pollute” the presentation and be a distracting element.

6 Exercising ITCs

In order to have a rough insight of ITC space consumption we exercised its usage for
both dynamic and static scenarios, using a mix of data and process causality. For data
causality in dynamic scenarios, each iteration consists of forking, recording an event
and joining two replicas, each performed on random replicas, leading to constantly
evolving ids. This pattern maintains the number of existing replicas while exercising
id management under churn. For process causality in a static scenario, we operate on
a fixed set of processes doing message exchanges (via peek and join) and recording
internal events; here ids remain unchanged, since messages are anonymous.

The charts in Figure 3 depict the mean size (using the binary encoding shown in
Appendix A) of an ITC across 100 runs of 25,000 iterations for process causality and
100,000 iterations for data causality and for different numbers of active entities (pre-
created by forking a seed stamp before iterating). It shows that space consumption
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Fig. 3: Average space consumption of an ITC stamp, in dynamic and static settings.

basically stabilizes after a number of iterations. These results show that ITCs can in fact
be used as a practical mechanism for data and process causality in dynamic systems,
contrary to Version Stamps [2] that have storage cost growing unreasonably over time.

In order to put these numbers in perspective, the Microsoft Windows operating sys-
tem [19] uses 128 bits Universally Unique Identifiers (UUIDs) and 32 bit counters. The
storage cost of a version vector for 128 replicas would be 2560 bytes using a mapping
from ids to counters and 512 bytes using a vector. The mean size of an ITC for this
scenario (at the end of the iterations) would be less than 2900 bytes for dynamic scenar-
ios and slightly above 170 bytes for static ones. While vectors can be represented in a
more compact way (e.g. factoring out the smallest number), such optimizations would
be irrelevant for dynamic scenarios, where most of the cost stems from the UUIDs.

7 Conclusions

We have introduced Interval Tree Clocks, a novel logical clock mechanism for dynamic
systems, where processes/replicas can be created or retired in a decentralized fashion.
The mechanism has been presented using a model (fork-event-join) that can serve as a
kernel to describe all classic operations (like message sending, symmetric synchroniza-
tion and process creation/retirement), being suitable for both process and data causality
scenarios.

We have presented a general framework for clock mechanisms, where stamps can
be seen as finite representations of a pair of functions over a continuous domain; the
event component serves to perform comparison or join (performed pointwise); the iden-
tity component defines a set of intervals where the event component can be inflated (a
generalization of the classic counter increment). ITC is a concrete mechanism that in-
stantiates the framework, using trees to describe functions on sets of intervals. The
framework opens the way for research on future alternative mechanisms that use differ-
ent representations of functions.

Previous approaches to causality tracking for dynamic systems either require access
to globally unique ids; do not reuse ids of retired entities; require global coordination for
garbage collection of ids; or exhibit an intolerable growth in terms of space consumption



(our previous approach). ITC is the first mechanism for dynamic systems that avoids all
these problems, can be used for both process and data causality, and requires a modest
space consumption, making it a general purpose mechanism, even for static systems.
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A A Binary Encoding for ITC

Here we describe a compact encoding of ITC as strings of bits. It may be relevant
when stamp size is an issue, e.g. when many entities are involved; it is appropriate to
being transmitted or stored persistently as a single blob. We do not attempt to present
an optimal (in some way) encoding, but a sensible one, which was used in the space
consumption analysis.

As an event tree tends to have very few large numbers near the root and many very
small numbers at the leaves; this prompts a variable length representation for integers,
where small integers occupy just a few bits. Also, common cases like trees with only
the left or right subtree, or with 0 for the base value are treated as special cases.

We use a notation (inspired by the bit syntax from the Erlang programming lan-
guage) where: �x, y, z� is a string of bits resulting from concatenating x, y and z;
and n:b represents number n encoded in b bits. An example:�2:3, 0:1, 1:2� represents
the string of 6 bits 010001.



enc((i, e)) =�enci(i), ence(e)�.

enci(0) =�0:2, 0:1�,
enci(1) =�0:2, 1:1�,

enci((0, i)) =�1:2, enci(i)�,
enci((i, 0)) =�2:2, enci(i)�,
enci((il, ir)) =�3:2, enci(il), enci(ir)�.

ence((0, 0, er)) =�0:1, 0:2, ence(er)�,
ence((0, el, 0)) =�0:1, 1:2, ence(el)�,
ence((0, el, er)) =�0:1, 2:2, ence(el), ence(er)�,
ence((n, 0, er)) =�0:1, 3:2, 0:1, 0:1, ence(n), ence(er)�,
ence((n, el, 0)) =�0:1, 3:2, 0:1, 1:1, ence(n), ence(el)�,
ence((n, el, er)) =�0:1, 3:2, 1:1, ence(n), ence(el), ence(er)�,

ence(n) =�1:1, encn(n, 2)�.

encn(n,B) =

{
�0:1, n:B� if n < 2B ,

�1:1, encn(n− 2B , B + 1)� otherwise.


