6 research outputs found

    Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies

    Get PDF
    It has been suggested that the internal dynamics of dwarf spheroidal galaxies (dSphs) can be used to test whether or not ultralight axions with ma1022eVm_a\sim 10^{-22}\text{eV} are a preferred dark matter candidate. However, comparisons to theoretical predictions tend to be inconclusive for the simple reason that while most cosmological models consider only dark matter, one observes only baryons. Here we use realistic kinematic mock data catalogs of Milky Way dSph's to show that the "mass-anisotropy degeneracy" in the Jeans equations leads to biased bounds on the axion mass in galaxies with unknown dark matter halo profiles. In galaxies with multiple chemodynamical components this bias can be partly removed by modelling the mass enclosed within each subpopulation. However, analysis of the mock data reveals that the least-biased constraints on the axion mass result from fitting the luminosity-averaged velocity dispersion of the individual chemodynamical components directly. Applying our analysis to two dSph's with reported stellar subcomponents, Fornax and Sculptor, and assuming that the halo profile has not been acted on by baryons, yields core radii rc>1.5r_{c}>1.5 kpc and rc>1.2r_c> 1.2 kpc respectively, and ma<0.4×1022eVm_a<0.4\times 10^{-22}\text{eV} at 97.5\% confidence. These bounds are in tension with the number of observed satellites derived from simple (but conservative) estimates of the subhalo mass function in Milky Way-like galaxies. We discuss how baryonic feedback might affect our results, and the impact of such a small axion mass on the growth of structures in the Universe.Comment: 17 pages, 12 figures. Version to match MNRAS. Analysis extended to anisotropic mocks. Main conclusions unchange

    Gain and loss of TASK3 channel function and its regulation by novel variation cause KCNK9 imprinting syndrome

    Get PDF
    Background: Genomics enables individualized diagnosis and treatment, but large challenges remain to functionally interpret rare variants. To date, only one causative variant has been described for KCNK9 imprinting syndrome (KIS). The genotypic and phenotypic spectrum of KIS has yet to be described and the precise mechanism of disease fully understood. Methods: This study discovers mechanisms underlying KCNK9 imprinting syndrome (KIS) by describing 15 novel KCNK9 alterations from 47 KIS-affected individuals. We use clinical genetics and computer-assisted facial phenotyping to describe the phenotypic spectrum of KIS. We then interrogate the functional effects of the variants in the encoded TASK3 channel using sequence-based analysis, 3D molecular mechanic and dynamic protein modeling, and in vitro electrophysiological and functional methodologies. Results: We describe the broader genetic and phenotypic variability for KIS in a cohort of individuals identifying an additional mutational hotspot at p.Arg131 and demonstrating the common features of this neurodevelopmental disorder to include motor and speech delay, intellectual disability, early feeding difficulties, muscular hypotonia, behavioral abnormalities, and dysmorphic features. The computational protein modeling and in vitro electrophysiological studies discover variability of the impact of KCNK9 variants on TASK3 channel function identifying variants causing gain and others causing loss of conductance. The most consistent functional impact of KCNK9 genetic variants, however, was altered channel regulation. Conclusions: This study extends our understanding of KIS mechanisms demonstrating its complex etiology including gain and loss of channel function and consistent loss of channel regulation. These data are rapidly applicable to diagnostic strategies, as KIS is not identifiable from clinical features alone and thus should be molecularly diagnosed. Furthermore, our data suggests unique therapeutic strategies may be needed to address the specific functional consequences of KCNK9 variation on channel function and regulation

    Croyances concernant la capacité de détection du mensonge ; Etude sur l'influence de la Dark Triad et de la profession

    No full text

    Clinical and pathological factors influencing survival in a large cohort of triple-negative breast cancer patients

    No full text
    Abstract Background To provide further information on the clinical and pathological prognostic factors in triple-negative breast cancer (TNBC), for which limited and inconsistent data are available. Methods Pathological characteristics and clinical records of 841 TNBCs diagnosed between 1994 and 2015 in four major oncologic centers from Sardinia, Italy, were reviewed. Multivariate hazard ratios (HRs) for mortality and recurrence according to various clinicopathological factors were estimated using Cox proportional hazards models. Results After a mean follow-up of 4.3 years, 275 (33.3%) TNBC patients had a progression of the disease and 170 (20.2%) died. After allowance for study center, age at diagnosis, and various clinicopathological factors, all components of the TNM staging system were identified as significant independent prognostic factors for TNBC mortality. The HRs were 3.13, 9.65, and 29.0, for stage II, III and IV, respectively, vs stage I. Necrosis and Ki-67 > 16% were also associated with increased mortality (HR: 1.61 and 1.99, respectively). Patients with tumor histotypes other than ductal invasive/lobular carcinomas had a more favorable prognosis (HR: 0.40 vs ductal invasive carcinoma). No significant associations with mortality were found for histologic grade, tumor infiltrating lymphocytes, and lymphovascular invasion. Among lymph node positive TNBCs, lymph node ratio appeared to be a stronger predictor of mortality than pathological lymph nodes stage (HR: 0.80 for pN3 vs pN1, and 3.05 for >0.65 vs <0.21 lymph node ratio), respectively. Consistent results were observed for cancer recurrence, except for Ki-67 and necrosis that were not found to be significant predictors for recurrence. Conclusions This uniquely large study of TNBC patients provides further evidence that, besides tumor stage at diagnosis, lymph node ratio among lymph node positive tumors is an additional relevant predictor of survival and tumor recurrence, while Ki-67 seems to be predictive of mortality, but not of recurrence

    Dark Matter Science in the Era of LSST

    Get PDF
    Astrophysical observations currently provide the only robust, empirical measurements of dark matter. In the coming decade, astrophysical observations will guide other experimental efforts, while simultaneously probing unique regions of dark matter parameter space. This white paper summarizes astrophysical observations that can constrain the fundamental physics of dark matter in the era of LSST. We describe how astrophysical observations will inform our understanding of the fundamental properties of dark matter, such as particle mass, self-interaction strength, non-gravitational interactions with the Standard Model, and compact object abundances. Additionally, we highlight theoretical work and experimental/observational facilities that will complement LSST to strengthen our understanding of the fundamental characteristics of dark matter
    corecore