183 research outputs found

    On the Causal Mechanisms of Stuttering

    Get PDF
    Stuttering is one of the most common speech disorders. However, the etiology is poorly understood, and is likely to be heterogeneous. The aim of this thesis was to clarify causal mechanisms, focusing the brain. The project included theoretical development based on published data, and a broad approach of explorative studies and testing of hypotheses. The theoretical work focused the basal ganglia, leading to a model based on the dual premotor systems hypothesis (G. Goldberg, 1985, 1991), which defines two parallel premotor systems: the medial (the basal ganglia and the SMA), and the lateral (the lateral premotor cortex and the cerebellum). Stuttering is suggested to be caused by a disturbance of the medial system, in most cases in the basal ganglia. The core dysfunction is proposed to be impaired "go-signals" from the medial system, supposed to trigger the next motor segment in speech. According to this model, under some conditions speech control is shifted from the medial to the lateral system, thereby bypassing the dysfunction and resulting in fluent speech. The lateral system is suggested to be active when speech is combined with sensory input, like chorus speech or metronome. Also the effect of altered auditory feedback in reducing stuttering is proposed to be based on this mechanism. It seems as the lateral system is able control speech timing without sensory input, but that this demands increased attention to some particular aspect of speech, as occurs in imitation of dialects, exaggerated rhythm, reduced speech rate, or role play. Also singing is suggested to be based on the lateral system. Superfluous muscular activation accompanying stuttering may be a type of dystonia: involuntary contractions related to the basal ganglia disturbance. The high prevalence of stuttering at age 2.5 to 3 years is proposed to reflect a normally occurring peak in the number of dopamine receptors at this age. A total of 35 stuttering adults participated. Two studies, of copper metabolism and "startle prepulse inhibition", did not indicate any significant differences in comparison with matched controls. It has previously been reported that stuttering may be associated with increased neuromuscular reactivity, measured as exaggerated eye-blink in response to noise. This aspect was investigated. The stuttering group showed somewhat stronger eye-blink, though not statistically significant. Strong eye-blink was not related to anxiety, but was clearly related to low calcium, which is known to increase the excitability of the nervous system. The stuttering group showed somewhat lower calcium, and a weak tendency towards more severe stuttering in case of low calcium. It is possible that low calcium can increase the severity of stuttering in some cases. A subgroup reported some traits of childhood ADHD, and this group typically also reported neurological incidents before the onset of stuttering. The subgroup without traits of ADHD typically reported having stuttering relatives but no neurological incident

    ECL Cell Histamine Mobilization Studied byGastric Submucosal Microdialysis in Awake Rats:Methodological Considerations.

    Get PDF
    The ECL cells are endocrine/paracrine cells in the acid-producing part of the stomach. They secrete histamine in response to circulating gastrin. Gastric submucosal microdialysis has been used to study ECL-cell histamine mobilization in awake rats. In the present study we assess the usefulness and limitations of the technique. Microdialysis probes were implanted in the gastric submucosa. Histological analysis of the stomach wall around the probe revealed a moderate, local inflammatory reaction 1-2 days after implantation; the inflammation persisted for at least 10 days. Experiments were conducted 3 days after the implantation. The "true" submucosal histamine concentration was determined by perfusing at different rates (the zero flow method) or with different concentrations of histamine at a constant rate (the no-net-flux method): in fasted rats it was calculated to be 87±5 (means±S.E.M.) nmol/l and 76±9 nmol/l, respectively. The corresponding histamine concentrations in fed rats were 93±5 and 102±8 nmol/l, respectively. With a perfusion rate of 74 mul/hr the recovery of submucosal histamine was 49%, at 34 mul/hr the recovery increased to 83%. At a perfusion rate below 20 mul/hr the microdialysate histamine concentration was close to the actual concentration in the submucosa. The ECL-cell histamine mobilization was independent of the concentrations of Ca2+ in the perfusion medium (0-3.4 mmol/l Ca2+). In one experiment, histamine mobilization in response to gastrin (10 nmol/kg/hr subcutaneously) was monitored in rats pretreated with prednisolone (60 mg/kg) or indomethacin (15 mg/kg). The two antiinflammatory agents failed to affect the concentration of histamine in the microdialysate either before or during the gastrin challenge, which was in accord with the observation that the inflammatory reaction was modest and that inflammatory cells were relatively few around the probe and in the wall of the probe. In another experiment, rats were given aminoguanidine (10 mg/kg) or metoprine (10 mg/kg) 4 hr before the start of gastrin infusion (5 nmol/kg/hr intravenously). Metoprine (inhibitor of histamine N-methyl transferase) did not affect the microdialysate histamine concentration, while aminoguanidine (inhibitor of diamine oxidase) raised both basal and gastrin-stimulated histamine concentrations. We conclude that microdialysis can be used to monitor changes in the concentration of histamine in the submucosa of the stomach, and that the inflammatory reaction to the probe is moderate and does not affect the submucosal histamine mobilization

    On the function of lead (Pb) in machining brass alloys

    Get PDF
    Lead has traditionally been added to brass alloys to achieve high machinability, but the exact mechanisms at work are still debated. Lead-free brass alternatives could be developed if these mechanisms were better understood. Accordingly, machinability characteristics were investigated for two brass alloys with similar mechanical properties and phase composition, but with very different machining characteristics because one has 3 wt.% lead (CuZn38Pb3) while the other has only 0.1 wt.% (CuZn42). The effect of the lead was investigated using infrared temperature measurement, electron microscopy, secondary ion mass spectroscopy, quick-stop methods, and high-speed filming. Neither melting of lead nor its deposition on the tool rake surface takes place during machining thus confirming its limited lubrication and tribological effects. Instead, the main role of lead is to promote discontinuous chip formation. Lead deforms to flake-like shapes that act as crack initiation points when the workpiece material passes through the primary deformation zone. This effect prevents the development of stable tool–chip contact, thus lowering cutting forces, friction, and process temperature

    Spårbar, inte sårbar!

    Get PDF

    Biomarkers in WNT1 and PLS3 Osteoporosis : Altered Concentrations of DKK1 and FGF23

    Get PDF
    Recent advancements in genetic research have uncovered new forms of monogenic osteoporosis, expanding our understanding of the molecular pathways regulating bone health. Despite active research, knowledge on the pathomechanisms, disease-specific biomarkers, and optimal treatment in these disorders is still limited. Mutations in WNT1, encoding a WNT/beta-catenin pathway ligand WNT1, and PLS3, encoding X chromosomally inherited plastin 3 (PLS3), both result in early-onset osteoporosis with prevalent fractures and disrupted bone metabolism. However, despite marked skeletal pathology, conventional bone markers are usually normal in both diseases. Our study aimed to identify novel bone markers in PLS3 and WNT1 osteoporosis that could offer diagnostic potential and shed light on the mechanisms behind these skeletal pathologies. We measured several parameters of bone metabolism, including serum dickkopf-1 (DKK1), sclerostin, and intact and C-terminal fibroblast growth factor 23 (FGF23) concentrations in 17 WNT1 and 14 PLS3 mutation-positive subjects. Findings were compared with 34 healthy mutation-negative subjects from the same families. Results confirmed normal concentrations of conventional metabolic bone markers in both groups. DKK1 concentrations were significantly elevated in PLS3 mutation-positive subjects compared with WNT1 mutation-positive subjects (p <.001) or the mutation-negative subjects (p = .002). Similar differences were not seen in WNT1 subjects. Sclerostin concentrations did not differ between any groups. Both intact and C-terminal FGF23 were significantly elevated in WNT1 mutation-positive subjects (p = .039 and p = .027, respectively) and normal in PLS3 subjects. Our results indicate a link between PLS3 and DKK1 and WNT1 and FGF23 in bone metabolism. The normal sclerostin and DKK1 levels in patients with impaired WNT signaling suggest another parallel regulatory mechanism. These findings provide novel information on the molecular networks in bone. Extended studies are needed to investigate whether these biomarkers offer diagnostic value or potential as treatment targets in osteoporosis. (c) 2020 American Society for Bone and Mineral Research.Peer reviewe

    The early ontogeny of neuronal nitric oxide synthase systems in the zebrafish

    Full text link
    To examine a putative role for neuronal nitric oxide synthase (nNOS) in early vertebrate development we investigated nNOS mRNA expression and cGMP production during development of the zebrafish Danio rerio. The nNOS mRNA expression in the central nervous system (CNS) and periphery showed a distinct spatio-temporal pattern in developing zebrafish embryo and young larvae. nNOS mRNA expression was first detected at 19 h postfertilisation (h.p.f.), in a bilateral subpopulation of the embryonic ventrorostral cell cluster in the forebrain. The number of nNOS mRNA-expressing cells in the brain slowly increased, also appearing in the ventrocaudal cell cluster from about 26 h.p.f., and in the dorsorostral and hindbrain cell cluster and in the medulla at 30 h.p.f. A major increase in nNOS mRNA expression started at about 40 h.p.f., and by 55 h.p.f. the expression constituted cell populations in differentiated central nuclei and in association with the proliferation zones of the brain, and in the medulla and retina. In parts of the skin, nNOS mRNA expression started at 20 h.p.f. and ended at 55 h.p.f. Between 40 and 55 h.p.f., nNOS mRNA expression started in peripheral organs, forming distinct populations after hatching within or in the vicinity of the presumptive swim bladder, enteric ganglia, and along the alimentary tract and nephritic ducts. Expression of nNOS mRNA correlated with the neuronal differentiation pattern and with the timing and degree of cGMP production. These studies indicate spatio-temporal actions by NO during embryogenesis in the formation of the central and peripheral nervous system, with possible involvement in processes such as neurogenesis, organogenesis and early physiology

    Neuropeptidomic analysis of the embryonic Japanese quail diencephalon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endogenous peptides such as neuropeptides are involved in numerous biological processes in the fully developed brain but very little is known about their role in brain development. Japanese quail is a commonly used bird model for studying sexual dimorphic brain development, especially adult male copulatory behavior in relation to manipulations of the embryonic endocrine system. This study uses a label-free liquid chromatography mass spectrometry approach to analyze the influence of age (embryonic days 12 vs 17), sex and embryonic day 3 ethinylestradiol exposure on the expression of multiple endogenous peptides in the developing diencephalon.</p> <p>Results</p> <p>We identified a total of 65 peptides whereof 38 were sufficiently present in all groups for statistical analysis. Age was the most defining variable in the data and sex had the least impact. Most identified peptides were more highly expressed in embryonic day 17. The top candidates for EE<sub>2 </sub>exposure and sex effects were neuropeptide K (downregulated by EE<sub>2 </sub>in males and females), gastrin-releasing peptide (more highly expressed in control and EE<sub>2 </sub>exposed males) and gonadotropin-inhibiting hormone related protein 2 (more highly expressed in control males and displaying interaction effects between age and sex). We also report a new potential secretogranin-2 derived neuropeptide and previously unknown phosphorylations in the C-terminal flanking protachykinin 1 neuropeptide.</p> <p>Conclusions</p> <p>This study is the first larger study on endogenous peptides in the developing brain and implies a previously unknown role for a number of neuropeptides in middle to late avian embryogenesis. It demonstrates the power of label-free liquid chromatography mass spectrometry to analyze the expression of multiple endogenous peptides and the potential to detect new putative peptide candidates in a developmental model.</p

    Proteomic Evaluation of Neonatal Exposure to 2,2′,4,4′,5-Pentabromodiphenyl Ether

    Get PDF
    Exposure to the brominated flame retardant 2,2′,4,4′,5-pentabromodiphenyl ether (PBDE-99) during the brain growth spurt disrupts normal brain development in mice and results in disturbed spontaneous behavior in adulthood. The neurodevelopmental toxicity of PBDE-99 has been reported to affect the cholinergic and catecholaminergic systems. In this study we use a proteomics approach to study the early effect of PBDE-99 in two distinct regions of the neonatal mouse brain, the striatum and the hippocampus. A single oral dose of PBDE-99 (12 mg/kg body weight) or vehicle was administered to male NMRI mice on neonatal day 10, and the striatum and the hippocampus were isolated. Using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), we found 40 and 56 protein spots with significantly (p < 0.01) altered levels in the striatum and the hippocampus, respectively. We used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI–ToF–MS) to determine the protein identity of 11 spots from the striatum and 10 from the hippocampus. We found that the levels of proteins involved in neurodegeneration and neuroplasticity (e.g., Gap-43/neuromodulin, stathmin) were typically altered in the striatum, and proteins involved in metabolism and energy production [e.g., α-enolase; γ-enolase; ATP synthase, H(+) transporting, mitochondrial F(1) complex, β subunit (Atp5b); and α-synuclein] were typically altered in the hippocampus. Interestingly, many of the identified proteins have been linked to protein kinase C signaling. In conclusion, we identify responses to early exposure to PBDE-99 that could contribute to persistent neurotoxic effects. This study also shows the usefulness of proteomics to identify potential biomarkers of developmental neurotoxicity of organohalogen compounds

    Psychedelics in developmental stuttering to modulate brain functioning: a new therapeutic perspective?

    Get PDF
    Developmental stuttering (DS) is a neurodevelopmental speech-motor disorder characterized by symptoms such as blocks, repetitions, and prolongations. Persistent DS often has a significant negative impact on quality of life, and interventions for it have limited efficacy. Herein, we briefly review existing research on the neurophysiological underpinnings of DS -specifically, brain metabolic and default mode/social-cognitive networks (DMN/SCN) anomalies- arguing that psychedelic compounds might be considered and investigated (e.g., in randomized clinical trials) for treatment of DS. The neural background of DS is likely to be heterogeneous, and some contribution from genetically determinants of metabolic deficiencies in the basal ganglia and speech-motor cortical regions are thought to play a role in appearance of DS symptoms, which possibly results in a cascade of events contributing to impairments in speech-motor execution. In persistent DS, the difficulties of speech are often linked to a series of associated aspects such as social anxiety and social avoidance. In this context, the SCN and DMN (also influencing a series of fronto-parietal, somato-motor, and attentional networks) may have a role in worsening dysfluencies. Interestingly, brain metabolism and SCN/DMN connectivity can be modified by psychedelics, which have been shown to improve clinical evidence of some psychiatric conditions (e.g., depression, post-traumatic stress disorder, etc.) associated with psychological constructs such as rumination and social anxiety, which also tend to be present in persistent DS. To date, while there have been no controlled trials on the effects of psychedelics in DS, anecdotal evidence suggests that these agents may have beneficial effects on stuttering and its associated characteristics. We suggest that psychedelics warrant investigation in DS
    corecore