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Abstract 32 

 33 

Recent advancements in genetic research have uncovered new forms of monogenic osteoporosis, 34 

expanding our understanding of the molecular pathways regulating bone health. Despite active 35 

research, knowledge on the pathomechanisms, disease-specific biomarkers and optimal treatment 36 

in these disorders is still limited. Mutations in WNT1, encoding a WNT/-catenin pathway ligand 37 

WNT1, and PLS3, encoding X chromosomally inherited plastin 3 (PLS3), both result in early-onset 38 

osteoporosis with prevalent fractures and disrupted bone metabolism. However, despite marked 39 

skeletal pathology, conventional bone markers are usually normal in both diseases. Our study aimed 40 

to identify novel bone markers in PLS3 and WNT1 osteoporosis that could offer diagnostic potential 41 

and shed light on the mechanisms behind these skeletal pathologies. We measured several 42 

parameters of bone metabolism, including serum dickkopf-1 (DKK1), sclerostin, and intact and C-43 

terminal fibroblast growth factor 23 (FGF23) concentrations in 17 WNT1 and 14 PLS3 mutation-44 

positive subjects. Findings were compared with 34 healthy mutation-negative subjects from the 45 

same families. Results confirmed normal concentrations of conventional metabolic bone markers in 46 

both groups. DKK1 concentrations were significantly elevated in PLS3 mutation-positive subjects 47 

compared with WNT1 mutation-positive subjects (p<0.001) or the mutation-negative subjects 48 

(p=0.002). Similar differences were not seen in WNT1 subjects. Sclerostin concentrations did not 49 

differ between any groups. Both intact and C-terminal FGF23 were significantly elevated in WNT1 50 

mutation-positive subjects (p=0.039 and 0.027, respectively) and normal in PLS3 subjects. Our 51 

results indicate a link between PLS3 and DKK1 and WNT1 and FGF23 in bone metabolism. The 52 

normal sclerostin and DKK1 levels in patients with impaired WNT signaling suggest another parallel 53 

regulatory mechanism. These findings provide novel information on the molecular networks in 54 
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bone. Extended studies are needed to investigate whether these biomarkers offer diagnostic value 55 

or potential as treatment targets in osteoporosis.  56 

 57 

Key words: WNT signaling, PLS3, dickkopf-1, sclerostin, fibroblast growth factor 23, osteoporosis  58 
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Introduction 59 

 60 

The discovery of new forms of monogenic osteoporosis has brought an abundance of new 61 

knowledge on the molecular pathways and specific proteins participating in bone health 62 

maintenance. In 2013, we and others showed that WNT1 is a key ligand to the WNT pathway in 63 

bone as monoallelic and biallelic mutations in WNT1 were identified to cause severe and early-onset 64 

autosomal dominant osteoporosis and autosomal recessive osteogenesis imperfecta, 65 

respectively(1). The mutated WNT1 leads to low activation of the WNT pathway, decreased 66 

expression of target genes and consequently low bone turnover, low bone mineral density (BMD) 67 

and prevalent fractures(1). Similarly, in 2013, mutations in Plastin 3–encoding PLS3, were reported 68 

to result in X-linked childhood-onset osteoporosis with frequent peripheral and vertebral 69 

compression fractures and low bone turnover with heterogenous and defective mineralization in 70 

bone biopsies(2–5). Due to its X-chromosomal inheritance pattern, the phenotype is typically more 71 

severe in affected males, while females have normal to increased skeletal fragility(2,3).  72 

 73 

The molecular mechanisms by which WNT1 and PLS3 modulate bone metabolism are very different. 74 

WNT signaling regulates bone cell development and differentiation directly and is a crucial 75 

component of skeletal development and homeostasis from early fetal development all throughout 76 

childhood growth and adulthood maintenance(6). Its aberrant activation has previously been 77 

demonstrated in several monogenic bone diseases with severe skeletal pathology; mutations in the 78 

transmembrane co-receptor low-density lipoprotein receptor-related protein 5 (LRP5) lead to 79 

osteoporosis-pseudoglioma syndrome and high bone mass disorder(7), and mutations in SOST, 80 

encoding WNT-pathway inhibitor sclerostin, result in sclerosing bone diseases sclerosteosis and van 81 

Buchem disease(8,9). Furthermore, genome-wide association studies have highlighted the pathway’s 82 
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role in bone health and the pathway is currently recognized as a preferable target for novel 83 

osteoporosis drugs(10,11). The functions of PLS3 in bone metabolism, on the other hand, are still 84 

largely unidentified. Animal studies indicate a role in regulation of cytoskeletal actin bundling(12) and 85 

their mechanosensory apparatus(2), and studies on patients’ bone biopsies suggest involvement in 86 

osteoclast function as well as bone matrix mineralization(5). However, the exact functions of PLS3 87 

and the pathways which its actions diverge with remain elusive. 88 

 89 

Vertebral fractures are a common feature in both WNT1 and PLS3 osteoporosis while the incidence 90 

of peripheral fractures varies. DXA-derived BMD values range from normal to severely reduced 91 

depending on patient age, gender and type of mutation(1,3–5). Furthermore, despite the distinct 92 

skeletal pathologies, conventional metabolic bone markers have been reported to be normal in 93 

affected WNT1 and PLS3 mutation-positive subjects(1,3,13,14). This great variability in clinical 94 

presentation often complicates and delays diagnosis. Therefore, we set out to evaluate, in addition 95 

to the conventional bone turnover markers, the circulating concentrations of dickkopf-1 (DKK1; 96 

dickkopf WNT signaling pathway inhibitor 1), sclerostin, and fibroblast growth factor 23 (FGF23) in 97 

WNT1 and PLS3 mutation-positive subjects to identify potential biomarkers for these two bone 98 

diseases and to further elucidate the molecular mechanisms behind their disturbed bone 99 

metabolism. All three markers—DKK1, sclerostin and FGF23—are mainly secreted by the 100 

osteocytes. Sclerostin and DKK1 are known inhibitors of WNT signaling in bone and target molecules 101 

for novel osteoporosis drugs, namely anti-sclerostin and anti-DKK1 antibodies(11,15). FGF23 is a 102 

hormone partaking in the regulation of serum phosphate concentration through renal excretion and 103 

intestinal absorption(16) although additional functions have also been suggested in e.g. iron 104 

metabolism, inflammation and erythropoiesis(17,18). Furthermore, we have previously reported 105 

altered osteocyte protein expression in bone biopsies of patients with WNT1 and PLS3 106 



8 
 

osteoporosis(19). Here, we report intriguing and counterintuitive findings of significantly elevated 107 

and gender-dependent concentrations of DKK1 in PLS3 mutation-positive subjects and normal 108 

concentrations in WNT1 mutation-positive subjects, and significantly elevated FGF23 109 

concentrations in WNT1 mutation-positive subjects.  110 

 111 

Patients and methods 112 

 113 

Subjects 114 

We recruited WNT1 mutation-positive subjects from two large Finnish families (Family A and B) with 115 

the same heterozygous missense mutation p.C218G in WNT1 as reported elsewhere(1,13,14). For the 116 

present study, we offered participation to all previously identified mutation-positive subjects 117 

(n=25). A control group, with similar genetic background and representing all age groups and both 118 

genders, was formed by offering participation to mutation-negative individuals in these two families 119 

(n=32). Altogether, 17 mutation-positive and 17 mutation-negative individuals consented from 120 

these two families. 121 

 122 

We recruited PLS3 mutation-positive subjects from four previously identified Finnish families with 123 

different PLS3 mutations(3,4,17): Family C = an intronic splice site mutation c.73-24T>A 124 

(p.Asp25Alafs*17)(3), Family D = a 12.5 kb tandem duplication spanning intron 2 to 3 of PLS3(20), 125 

Family E = a nonsense mutation c.766C>T (p.Arg256*)(4), and Family F = a de novo heterozygous 126 

missense mutation c.1424A>G (p.N446S)(4). We offered participation to all mutation-positive 127 

individuals (n=14, n=3, n=2, n=1, respectively) in these four families. Similarly, participation was also 128 

offered to mutation-negative individuals from the same four families. Altogether, 14 mutation-129 

positive and 17 mutation-negative individuals consented. 130 



9 
 

 131 

Upon participation, all subjects signed a written informed consent to participation in the study. All 132 

genetic and clinical studies were approved by the Research Ethics Board of Helsinki University 133 

Hospital. 134 

 135 

Genetic evaluations 136 

We have previously, in our prior studies on monogenic forms of osteoporosis, identified the same 137 

WNT1 mutation in two unrelated Finnish families(1,13) and four different PLS3 mutations in four 138 

Finnish families(3,4,20). These were identified using different methods, including targeted Sanger 139 

sequencing, whole-genome sequencing, and custom-made array-comparative genomic 140 

hybridization ((1,3,4,13,20). In the current study, we screened all participating study subjects for the 141 

pertinent gene mutation with conventional Sanger sequencing on DNA extracted from peripheral 142 

blood as previously described(13).  143 

 144 

Clinical assessments 145 

We gathered data on previous fractures and prior or current osteoporosis and other medications 146 

by patient questionnaires and from hospital records. BMD measures were collected from previously 147 

performed dual-energy X-ray absorptiometry–assessments, which were all performed at different 148 

time points and using different machines. Measured BMD values are given as Z-scores, calculated 149 

using equipment-specific normative data; these are used to roughly compare and differentiate 150 

between normal and osteoporotic BMD status.  151 

 152 

Biochemical evaluations 153 
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We collected all blood samples in the morning between 8 and 9 a.m. after an overnight fast. Serum 154 

aliquots were immediately stored at –80°C until analyses. Serum concentrations of ionized calcium, 155 

phosphate and alkaline phosphatase (ALP), and urinary phosphate and creatinine were analyzed by 156 

routine clinical laboratory assays at the HUSLAB Laboratory, Helsinki, Finland. Serum 25-157 

hydroxyvitamin D concentrations were determined with a chemiluminescent immunoassay (CLIA) 158 

on two analyzers: the Architect i2000SR analyzer (Abbott, Deerfield, IL, USA) with an assay 159 

performance of: analytical range 10–300 nmol/L, intra-assay coefficient of variation (CV) of <6%, 160 

and interassay CV <8%; and the Advia Centaur XPT analyzer (Siemens, Raritan, NJ, USA) with an 161 

assay performance of: analytical range 10.5–375 nmol/L, intra-assay CV of <6%, and interassay CV 162 

<9%. Serum 1,25-dihydroxyvitamin D was analyzed by CLIA on a LIAISON XL analyzer (DiaSorin, 163 

Stillwater, MN, USA) with an assay performance of: analytical range 12–480 pmol/L, intra-assay CV 164 

of <4%, and interassay CV <5%. Both parathyroid hormone (PTH) and collagen type 1 cross-linked 165 

C-telopeptide (CTX; a bone resorption marker) were assessed with CLIA assays on the IDS-iSYS fully 166 

automated immunoassay system (Immunodiagnostic Systems, Ltd., Bolton, UK). The PTH assay 167 

performance was as follows: analytical range 5–5000 pg/mL, intra-assay CV of <4%, and interassay 168 

CV <5%. The CTX assay performance was as follows: analytical range 0.033–6.000 ng/mL, intra-assay 169 

CV of <6%, and interassay CV <10%. Serum intact FGF23 was determined by an enzyme-linked 170 

immunosorbent assay (ELISA) (Kainos Laboratories, Inc., Tokyo, Japan) with an assay performance 171 

of: analytical range 8–800 pg/mL, intra-assay CV of <6%, and interassay CV of <10%. Serum C-172 

terminal FGF23 was assessed by ELISA (Biomedica, Vienna, Austria) with an assay performance of: 173 

analytical range 0.1–20.0 pmol/L, intra-assay CV of <12%, and interassay CV <10%. Serum DKK1 was 174 

measured by ELISA (Biomedica) with an assay performance of: analytical range 1.7–160 pmol/L, 175 

intra-assay CV of <3%, and interassay CV <5%. Serum sclerostin was determined by ELISA 176 

(Biomedica) with an assay performance of: analytical range 3.2–240 pmol/L, intra-assay CV of <7%, 177 
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and interassay CV <10%. Serum type I procollagen intact N-terminal propeptide (PINP) was assessed 178 

with the UniQ radioimmunoassay (Orion Diagnostica, Espoo, Finland) with an assay performance of: 179 

analytical range 5–250 µg/L, intra-assay CV of <5%, and interassay CV <6%. All samples were run in 180 

duplicates and in full accordance with the manufacturers’ instructions for all biochemical assays. 181 

 182 

Statistical analyses 183 

Descriptive data are reported as median and range when appropriate. Normality of data was 184 

assessed by the Kolmogorov–Smirnov and Shapiro–Wilk tests, and visually using histograms. 185 

Unpaired two-tailed Student’s t test, Mann–Whitney U test, and Pearson correlation were used as 186 

appropriate (SPSS Statistics 24; IBM Corporation, Armond, NY, USA). p-values <0.05 were 187 

considered statistically significant.  188 

 189 

Results 190 

 191 

Subjects 192 

The current study comprised a total of 17 WNT1 mutation-positive subjects (12 females, age range 193 

11–76 years, median 52 years) from two families with a WNT1 missense mutation p.C218G (Families 194 

A and B) and 14 PLS3 mutation-positive subjects (9 females, 8–76 years, median 41 years) from four 195 

families with different PLS3 mutations (Families C–F) (Figure 1, Table 1). The control subjects 196 

consisted of altogether 34 mutation-negative individuals (17 females, 8–77 years, median 36 years) 197 

from these same six families (Figure 1, Supplemental Table 1).  198 

 199 

The mutation-positive subjects had varying histories of previous fractures (range 0 to >10 fractures), 200 

vertebral compression fractures and osteoporosis medications (Figure 1, Table 1). Treatment for 201 
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osteoporosis was ongoing for three subjects at the time of study. Another three subjects received 202 

inhaled glucocorticoid treatment for asthma with low to moderate dosages. The mutation-negative 203 

subjects also had varying histories of previous fractures (range of peripheral fractures 0–9) but none 204 

had ongoing osteoporosis medication at the time of the study (Supplemental Table 1). Six of the 205 

subjects had ongoing glucocorticoid treatment for asthma; all were in low to moderate dosages and 206 

given in inhaled form. 207 

 208 

Biochemical markers of bone and mineral metabolism 209 

Evaluations of serum ionized calcium, phosphate, 1,25-dihydroxy- and 25-hydroxyvitamin D and 210 

PTH, and urinary phosphate concentrations showed mostly normal and only isolated findings of 211 

supra- and subnormal values in both mutation-positive and mutation-negative subjects; no 212 

differences between the groups were noted (Figure 2, Supplemental Table 2). Similarly, no 213 

differences between the groups were observed for the bone turnover markers PINP, ALP and CTX 214 

(Figure 2, Supplemental Table 2).  215 

 216 

DKK1, sclerostin and FGF23 concentrations  217 

We observed no significant differences in serum DKK1 between the WNT1 mutation-positive 218 

(median 27.3 pmol/L; range 13.2–58.9 pmol/L) and the mutation-negative (median 27.9 pmol/L; 219 

4.4–81.8 pmol/L) subjects (p=0.583) (Figure 3, Supplemental Table 2). Correspondingly, the serum 220 

sclerostin concentrations were similar between the WNT1 mutation-positive and the mutation-221 

negative subjects: 19.5 pmol/L (8.9–34.0 pmol/L) and 19.8 pmol/L (4.3–123 pmol/L), respectively 222 

(p=0.905) (Figure 3, Supplemental Table 2).  223 

 224 
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On the contrary, both C-terminal and intact FGF23 concentrations were significantly elevated in the 225 

WNT1 mutation-positive subjects compared with the mutation-negative subjects (medians 1.51 vs 226 

0.96 pmol/L and 54.9 vs 51.4 pg/mL; p=0.027 and p=0.039, respectively) (Figure 4, Supplemental 227 

Table 2). Of note, despite elevated FGF23, serum and urinary phosphate concentrations were similar 228 

between the mutation-positive and negative subjects (Supplemental Table 2). 229 

 230 

We found DKK1 to be significantly elevated in the PLS3 mutation-positive subjects in comparison 231 

with the WNT1 mutation-positive subjects (medians 27.3 pmol/L (13.2–58.9 pmol/L vs 53.3 pmol/L, 232 

p<0.001) and mutation-negative subjects (27.9 pmol/L (4.4–81.8 pmol/L), p=0.002) (Figure 3, 233 

Supplemental Table 2). Post-hoc analysis by gender confirmed that female PLS3 mutation-positive 234 

subjects (n=9) had significantly increased DKK1 concentrations in comparison with female mutation-235 

negative subjects (n=17) (p=0.009) (Figure 3). The difference for PLS3 mutation-positive males (n=5) 236 

vs mutation-negative males (n=17) was less distinct (p=0.100) (Figure 3). The DKK1 concentrations 237 

in the PLS3 mutation-positive subjects did not vary depending on age (r=0.192; p=0.510) nor 238 

depending on past or ongoing osteoporosis medication (Figure 2). Sclerostin concentrations did not 239 

differ between the PLS3 mutation-positive and the mutation-negative subjects: 17.4 pmol/L (5.0–240 

43.0 pmol/L) vs 19.8 pmol/L (4.3–123.0 pmol/L) (p=1.000) (Figure 3). No significant differences were 241 

noted in FGF23 concentrations between the PLS3 mutation-positive and the mutation-negative 242 

subjects (p=0.610 for C-terminal and p=0.634 for intact) (Figure 4).  243 

 244 

Discussion 245 

 246 

This study is the first to systematically assess several conventional and new bone markers, including 247 

DKK1, sclerostin, and intact and C-terminal FGF23, in a large cohort of pediatric and adult subjects 248 
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with WNT1 or PLS3 mutations. Mutations in WNT1 and PLS3 are known to cause severe, early-onset 249 

osteoporosis with frequent fractures, low BMD, and on the tissue level, low bone turnover and 250 

distinct bone pathology(1,3,4,13). While the skeletal consequences of aberrant WNT1 signaling are 251 

quite well understood, the primary pathways and molecular mechanisms by which abnormal PLS3 252 

function results in skeletal disease are still largely unknown. Additionally, recognizing the inaccuracy 253 

of conventional metabolic bone markers in evaluating bone health in osteoporotic patients(21) and 254 

their normality in low-turnover, monogenic and collagen-independent skeletal disorders(1,3,13,14), 255 

evaluating alternate biomarkers offers novel information and potential targets for future diagnostic 256 

and therapeutic means. We report novel findings suggesting a link between PLS3 and DKK1 in bone 257 

metabolism with an increase in serum DKK1. In addition, we report normality of DKK1 and sclerostin 258 

in WNT1-related bone disease, but elevated serum intact and C-terminal FGF23 in WNT1 mutation-259 

positive subjects. These findings shed light on possible pathomechanisms behind these skeletal 260 

disorders and on the key proteins governing bone health. 261 

 262 

WNT pathway is a key regulator of skeletal development from early fetal period to all throughout 263 

childhood, adolescent growth and mature bone homeostasis in adulthood and its aberrant 264 

activation leads to several skeletal disorders of both low and high bone mass(7–9). DKK1, encoded by 265 

DKK1, is an inhibitor of the WNT signaling pathway and thus an important factor maintaining 266 

balanced bone metabolism. Its primary source in bone is presumably osteocytes and the role to 267 

inhibit WNT signaling by binding to the transmembrane dual-receptor complex consisting of LRP5 268 

or LRP6 and seven transmembrane G-protein Frizzled and inactivating this receptor complex(6,22,23). 269 

Sclerostin, encoded by SOST and also secreted by osteocytes, acts in a similar manner by targeting 270 

LRP5/6 and reducing binding of a WNT ligand to the receptor complex(6). WNT signaling is bone 271 

formation–favoring as it promotes first mesenchymal progenitor cell commitment to the 272 
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osteoblastic lineage and then osteoblast differentiation, proliferation and activity. In normal 273 

conditions, WNT signaling and its inhibition by DKK1 and sclerostin are kept at refined balance to 274 

maintain sufficient and to detain excessive bone formation. Serum concentrations of sclerostin are 275 

reported to vary between different age groups and genders and also largely depending on the 276 

method used for analysis(24,25,26,27). For DKK1, on the other hand, information about its association 277 

with age or gender is limited and from the few studies reported, no association was observed.   278 

 279 

The heterozygous WNT1 mutation p.C218G leads to decreased activation of the WNT pathway, low 280 

target gene transcription and consequently low bone formation and turnover(1). DKK1 and sclerostin 281 

function to inhibit WNT signaling and in the presence of decreased WNT pathway activation due to 282 

the mutated WNT1, one would hypothesize that this would lead to decreased concentrations of the 283 

pathway’s inhibitors and that concentrations of DKK1 and sclerostin would be subsequently similarly 284 

decreased. The finding of unaltered circulating DKK1 and sclerostin in WNT1 mutation-positive 285 

subjects is unexpected and suggests that no compensatory feed-back mechanisms exist from the 286 

intracellular WNT/-catenin activity to its negative regulators. This particular WNT1 mutation only 287 

leads to haploinsufficiency and slightly reduced WNT1 signaling which may impact the results(1). 288 

Other plausible explanations could be that the actions by DKK1 and sclerostin are outplayed by other 289 

partaking or compensatory mechanisms, or that the communication between WNT1, sclerostin and 290 

DKK1 is not as exclusive as previously thought(21).  291 

 292 

On the contrary, we observed significantly elevated serum concentrations of FGF23 but normal 293 

phosphate parameters in WNT1 mutation-positive subjects. This is congruent to our previous 294 

findings of high expression of FGF23 in bone biopsies from WNT1 mutation-positive subjects(19). The 295 

FGF23 concentrations did not vary depending on age or gender, as supported by general 296 
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assumptions that serum FGF23 concentrations do not associate with age, gender or puberty(28). 297 

Furthermore, we did not find significant differences in serum phosphate or vitamin D concentrations 298 

between the groups. FGF23 is mainly secreted from osteocytes, regulates primarily systemic 299 

phosphate homeostasis and its malfunction is linked to several inherited syndromes with 300 

hypophosphatemic rickets and tumor-induced osteomalacia(29). However, the impact of FGF23 on 301 

serum phosphate levels in normal physiological and osteoporotic conditions is not well described. 302 

We and others have previously reported that neither intact nor C-terminal FGF23 levels correlate 303 

with serum or urinary phosphate in children, suggesting additional roles for FGF23 in bone 304 

metabolism(30,31). This might be reflected in the WNT1 subjects in our study, where additional 305 

mechanisms are likely to be included. The link between FGF23 and WNT1 in bone is unclear and we 306 

have previously postulated that increased FGF23 in response to low WNT signaling—independent 307 

of changes in PTH—could be mediated by altered nuclear receptor–associated protein 1(24,32). 308 

However, given our previous findings of low bone marrow iron storage(27) and the previously 309 

identified link between iron metabolism and FGF23(33,34), the rise in circulating FGF23 could be in 310 

result of an iron-deficient microenvironment in bone. However, these interactions between 311 

different proteins are likely very complex and demand further functional investigations. 312 

  313 

Although PLS3 has an inevitably important role in bone metabolism, as demonstrated by the skeletal 314 

phenotypes in PLS3 mutation-positive patients, the molecular mechanisms behind the grave 315 

skeletal changes are still largely unknown. PLS3 has been shown to modulate actin bundling and 316 

cytoskeletal remodeling and is thought to enable cell endo- and exocytosis, migration and 317 

adhesion(34,35). In bone specifically, PLS3 was first suggested to be involved in osteocytes’ 318 

mechanosensing abilities(2,12), and, more recently, experimental findings suggest involvement in 319 

osteoclastogenesis and osteoclast function through impaired podosome organization(36,37). 320 
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Evaluations of patients’ bone biopsies collectively insinuate a mineralization defect, which could 321 

stem from a combination of these different mechanisms(5,23,39).  322 

 323 

The finding that mutations in PLS3 somehow relay to altered DKK1 secretion is novel and important. 324 

Our group has previously reported delayed and disturbed bone matrix mineralization in a young 325 

male with a PLS3 deletion(5), but the mechanism behind PLS3’s presumed role in matrix 326 

mineralization has remained elusive. Further, although WNT signaling and one of its antagonists 327 

DKK1, are important for bone metabolism and DKK1 has been shown to inhibit matrix mineralization 328 

in a dose-dependent manner(6,39), the mechanism by which defective PLS3 leads to altered DKK1 329 

concentrations is unclear. One plausible explanation could be that the mutated PLS3 affects 330 

osteocyte function, leading to increased DKK1 production and secretion. Saupe et al. have 331 

previously described that drug-induced disruptions in actin cytoskeleton and focal adhesion 332 

signaling impacted DKK1 mRNA levels in tumor cells(40). The effects of PLS3 mutations on DKK1 333 

production could also be indirect, transmitted through other, yet unidentified proteins. Further, the 334 

reason for low bone turnover in PLS3 osteoporosis could reside in defective WNT signaling, which 335 

might also explain the similarities in phenotype between WNT1 and PLS3 mutation-positive 336 

patients. Our post-hoc analysis by gender confirmed the main finding in female patients. Although 337 

DKK1 was elevated also in PLS3 mutation-positive males compared to healthy subjects the post-hoc 338 

analysis did not reach statistical significance, probably due to lack of statistical power based on the 339 

low number of male patients (n=5). Possible gender differences remain unclear and unanswered by 340 

our study and demand further investigation. Furthermore, if the changes in DKK1 are due to 341 

cytoskeletal changes and osteocyte dysfunction, it remains unclear why sclerostin concentrations 342 

remain unaltered. Lastly, the normality of the osteocyte-derived FGF23 in PLS3 subjects is also an 343 

interesting and important observation.  344 
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 345 

Both DKK1 and sclerostin are target molecules for novel osteoporosis treatments; anti-DKK1 and 346 

anti-sclerostin antibodies are to counteract these proteins’ inhibitory actions and enhance WNT-347 

driven bone formation(11,15). While promising in postmenopausal osteoporosis treatment(11,15), their 348 

therapeutic efficiency in WNT1- or PLS3-related bone diseases are yet to be verified. For WNT1 349 

osteoporosis, the unexpected normality in sclerostin concentrations could indicate that anti-350 

sclerostin antibody might be a very effective treatment modality for WNT1 mutation-positive 351 

subjects. Since the low WNT signaling in WNT1 mutation-positive subjects is not corrected by 352 

feedback regulation to subsequently reduce the negative effect of DKK1 and sclerostin, it is possible 353 

that their inhibitory effect on the WNT pathway amplifies the effect of absent WNT stimulus on 354 

bone metabolism, further reducing bone formation and contributing to the skeletal phenotype. 355 

Moreover, the relatively high concentrations of DKK1 and sclerostin could partly explain the severe 356 

bone phenotype in heterozygote WNT1 subjects. Correspondingly, the surprising finding of elevated 357 

DKK1 in PLS3 mutation-positive subjects might imply that this could similarly be a suitable route for 358 

effective treatment in PLS3 osteoporosis. Lastly, with novel anti-FGF23 antibodies providing positive 359 

findings in preliminary mouse studies and clinical trials(41), similar approaches could be taken to 360 

evaluate to efficiency of blocking FGF23 signaling to enhance bone quality in WNT1-related bone 361 

disorders.   362 

 363 

While conventional markers of bone turnover are typically informative when monitoring treatment 364 

response, their value in evaluating altered turnover in individual patients is limited, even in high-365 

turnover cases(24). In WNT1 and PLS3 mutation-positive subjects, the conventional metabolic 366 

markers are normal despite clear skeletal phenotypes and increased bone fragility(1,3,14,15). One 367 

reason can be that recommended bone markers for clinical use, i.e. CTX and PINP(24), mainly reflect 368 
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turnover of collagen type I, while PLS3 and WNT1 osteoporosis are associated with collagen-369 

independent, partly still unidentified biological mechanisms. In addition, both conditions are 370 

identified as low-turnover osteoporosis, whereby the sensitivity of conventional bone markers is an 371 

additional limitation for identifying alterations.  372 

 373 

We acknowledge certain limitations in our study. These primarily concern the small cohort size of 374 

mutation-positive subjects and the lack of longitudinal assessment of how DKK1 and sclerostin 375 

concentrations might respond to disease progression or osteoporosis treatment. For this reason, 376 

we were not able to assess whether these biomarkers could be used as predictive markers of future 377 

fractures, which should be evaluated in future studies. We also were not able to fully evaluate 378 

possible correlation between the biomarker concentrations and BMD. Since the patients originated 379 

from various parts of the country, BMD assessments were performed using different DXA machines 380 

and therefore we were able to only use Z-values from equipment-specific normative data. Some 381 

study participants, among both the mutation-positive and mutation-negative subjects, received 382 

inhaled glucocorticoid treatment at the time of the study. None of these subjects, however, were 383 

treated with high dosages or with oral glucocorticoids. Since the impact of inhaled glucocorticoids 384 

was regarded minimal(42), we did not exclude them from the study. Furthermore, the selection of 385 

the mutation-negative individuals for the control group was based solely on family relations, in 386 

order to have groups with similar overall genetic backgrounds, while disregarding age, gender or 387 

menopausal status as inclusion or exclusion criteria. Lastly, in the premise of this study, we were 388 

not able to further functionally evaluate for example bone tissue expression of DKK1 or sclerostin 389 

or the detailed communications between these proteins. The potential of improving bone health in 390 

these patients by targeting these molecules remains to be elucidated in future studies. Nonetheless, 391 

given the rarity of both WNT1 and PLS3 mutation-positive subjects, a control group of individuals 392 
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from the same families and the novelty of the research topic, we consider our results to be highly 393 

valuable and provide unique and novel information on the molecular mechanisms behind these 394 

monogenic skeletal pathologies. 395 

 396 

In conclusion, our results intriguingly indicate increased DKK1 concentration in PLS3 osteoporosis 397 

and suggest a link between PLS3 and DKK1 in bone metabolism. Sclerostin concentrations are 398 

normal in WNT1 and PLS3 osteoporosis but FGF23 may be impacted by abnormal WNT1 signaling. 399 

These findings provide novel information on the molecular communications in bone and open up 400 

new avenues for focused studies on mechanisms in PLS3- and WNT1-related skeletal disorders. 401 

DKK1 and FGF23 may be clinically useful biomarkers for PLS3 and WNT1 osteoporosis, respectively. 402 

Future studies should investigate the relevance of these findings in larger patient cohorts and in 403 

clinical treatment trials targeting WNT pathway antagonists.   404 
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Figures 587 

 588 

Figure 1. Pedigrees of the six included Finnish families with WNT1 and PLS3 mutations. A) and B) 589 

WNT1 missense mutation c.652T>G (p.C218G) C) PLS3 intronic splice site mutation c.73–24T>A 590 

(p.Asp25Alafs*17), D) intragenic tandem duplication within PLS3, E) PLS3 de novo heterozygous 591 

missense mutation c.1424AG> (p.N466S), and F) PLS3 nonsense mutation c.766C>T (p.Arg256*). The 592 

pedigrees have been modified to ensure anonymity. Squares represent males, circles females. 593 

 594 

Figure 2. Scatter plots of bone turnover marker serum concentrations in 17 WNT1 mutation-595 

positive and 14 PLS3 mutation-positive subjects and 34 mutation-negative subjects. A) 596 

Parathyroid hormone (PTH); B) Collagen type 1 cross-linked C-telopeptide (CTX-1); C) Alkaline 597 

phosphatase (ALP); D) Type I procollagen intact N-terminal propeptide (PINP); E) Sclerostin; F) 598 

Dickkoph-1 (DKK1); and fibroblast growth factor 23 (FGF23) in G) intact and H) C-terminal form. Blue 599 

represents WNT1 subjects, red PLS3 subjects, gray circles mutation-negative subjects. The WNT1 600 

mutation-positive subjects harbor a heterozygous WNT1 missense mutation c.652T>G (p.C218G). 601 

The PLS3 mutation-positive subjects harbor different PLS3 mutations: nine with an intronic splice 602 

site mutation c.73–24T>A (p.Asp25Alafs*17), three with a duplication of exon 3, and two with a 603 

nonsense mutation c.766C>T (p.Arg256*). Subjects with ongoing osteoporosis treatment at the 604 

time of the study are indicated by black marker outlines.  605 

 606 

Figure 3. Box plots of serum DKK1 and sclerostin concentrations in 17 WNT1 mutation-positive 607 

subjects (A–B) and 14 PLS3 mutation-positive subjects (C–D) compared with 34 healthy mutation-608 

negative subjects. MP = mutation-positive, MN = mutation-negative, F = female, M = male. The PLS3 609 

mutation-positive subjects harbor different mutations: seven with heterozygous and two with 610 



31 
 

hemizygous deletion c.73–24T>A (p.Asp25Alafs*17); one with heterozygous and two with 611 

hemizygous duplication of exon 3; and one with heterozygous and one with hemizygous nonsense 612 

mutation c.766C>T (p.Arg256*). All WNT1 mutation-positive subjects harbor a heterozygous 613 

missense mutation c.652T>G (p.C218G). For B) and D) the scale has been adjusted for visual clarity, 614 

leaving one outlier (MN-34; 123 pmol/L) outside the graph. p-values derived from Mann–Whitney 615 

U test. 616 

 617 

Figure 4. Box plots of serum intact and C-terminal FGF23 concentrations in 17 WNT1 mutation-618 

positive subjects (A–B) and 14 PLS3 mutation-positive subjects (C–D) compared with 34 healthy 619 

mutation-negative subjects. MP = mutation-positive, MN = mutation-negative, F = female, M = 620 

male, I = intact, C = C-terminal. The PLS3 mutation-positive subjects harbor different mutations: 621 

seven with heterozygous and two with hemizygous deletion c.73–24T>A (p.Asp25Alafs*17); one 622 

with heterozygous and two with hemizygous duplication of exon 3; and one with heterozygous and 623 

one with hemizygous nonsense mutation c.766C>T (p.Arg256*). All WNT1 mutation-positive 624 

subjects harbor a heterozygous missense mutation c.652T>G (p.C218G). For B) the scale has been 625 

adjusted for visual clarity, leaving one outlier (WNT1-2; 11.02 pmol/L) outside the graph. p-values 626 

derived from Mann–Whitney U test. 627 
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Tables 

 
Table 1. Clinical data for 17 WNT1 and 14 PLS3 mutation-positive subjects.  
 

Subject, 
Family 

Gender 
Age 

(years) 

Number of 
peripheral 
fractures 

Vertebral 
compression 

fractures 

Prior osteoporosis 
medication, years 

since last dose 

Type of 
osteoporosis 
medication 

Inhaled 
glucocorticoids** 

Postmenopausal 

BMD (Z-scores) 

LS Fem WB 

WNT1 mutation-positive subjects 

WNT1 mutation-positive subjects n=17; median age 52 years; 12 females/5 males; % of postmenopausal females (of all, of females) 35%, 75% 

WNT1 mutation-negative subjects n=17; median age 31 years; 8 females/9 males; % of postmenopausal females (of all, of females) 6%, 11% 

WNT1-1, A F 11 1 No No None No No -0.5 0.0 -0.5 

WNT1-2, A F 13 1 No No None No No -2.1 -1.3 N/A 

WNT1-4, A F 17 9 No Yes* PAM No No -2.5 -0.5 -1.0 

WNT1-6, A F 34 2 No No None No No -1.5 -2.2 -2.2 

WNT1-7, A F 44 0 No No None No No -1.4 -0.9 N/A 

WNT1-8, A F 48 >5 Yes Yes, 3 ZOL No No -1.2 -2.4 -2.0 

WNT1-9, A F 52 0 No No None No Yes N/A N/A N/A 

WNT1-11, A F 53 5 Yes Yes, 2 DMAB No Yes -2.0 -1.0 -1.1 

WNT1-12, A F 54 0 No No None No Yes -3.3 -1.1 -1.5 

WNT1-14, B F 68 1 Yes No None No Yes 0.2 -1.0 -1.5 

WNT1-15, A F 71 9 Yes Yes, 12 EST, RIS Yes Yes -1.5 -1.6 N/A 

WNT1-16, A F 74 6 Yes Yes* 
ALN, PTH, ZOL, 

DMAB 
No Yes -0.8 -1.9 N/A 

WNT1-3, A M 13 4 No No None No N/A -1.1 -0.5 -0.7 

WNT1-5, A M 19 2 No No None No N/A -2.2 -0.1 N/A 

WNT1-10, A M 52 2 Yes No None No N/A -2.8 -1.3 -2.3 

WNT1-13, A M 63 3 Yes Yes, 5 ZOL, PTH No N/A -2.2 -1.3 -3.5 

WNT1-17, A M 76 1 Yes Yes, 6 ZOL, PTH No N/A 0.1 0.0 N/A 

PLS3 mutation-positive subjects 
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PLS3 mutation-positive subjects n=14; median age 41 years; 9 females/5 males; % of postmenopausal females (of all, of females) 21%, 33% 

PLS3 mutation-negative subjects n=17; median age 39 years; 9 females/8 males; % of postmenopausal females (of all, of females) 18%, 25% 

PLS3-2, C F 11 0 No No None No No N/A N/A N/A 

PLS3-3, C F 14 0 No No None No No N/A N/A N/A 

PLS3-4, C F 15 0 No No None Yes No -2.2 -1.2 -1.1 

PLS3-7, D F 41 0 Yes No None Yes No N/A N/A N/A 

PLS3-8, C F 41 0 Yes Yes* ZOL No No -2.2 -1.5 -2.0 

PLS3-10, C F 48 0 No No None No No -0.6 0.5 -0.6 

PLS3-11, C F 51 0 Yes Yes, 5 PTH No Yes -1.3 N/A -0.7 

PLS3-12, E F 57 1 No No None No Yes 1.2 1.1 -0.7 

PLS3-13, C F 69 >10 Yes Yes, 4 PTH, ZOL No Yes -2.3 -0.6 -1.9 

PLS3-1, D M 8 2• Yes No None No N/A N/A N/A N/A 

PLS3-5, D M 21 1 Yes Yes, 9 ZOL No N/A -0.3 -1.4 -0.2 

PLS3-6, E M 32 4 Yes None None No N/A -4.1 -3.3 -4.5 

PLS3-9, C M 45 10• Yes Yes, 7 ZOL No N/A -1.9 -1.8 -2.5 

PLS3-14, C M 76 4 Yes Yes, 4 ZOL No N/A -2.2 N/A -2.3 

 
Mutation-positive subjects from families A and B harbor a heterozygous WNT1 missense mutation c.652T>G (p.C218G). Mutation-positive subjects from 
families C to F harbor different PLS3 mutations: Family C = intronic splice site mutation c.73–24T>A (p.Asp25Alafs*17), Family D = duplication of exon 3, Family 
E = nonsense mutation c.766C>T (p.Arg256*). F = female, M = male, LS = lumbar spine, Fem = femoral neck, WB = whole body, ALN = alendronate, ZOL = 
zoledronic acid, PTH = teriparatide, DMAB = denosumab, EST = estrogen, RIS= risedronate, PAM = pamidronate. 
• Last fracture within 12 months prior to the study 
* Ongoing osteoporosis medication at the time of study 
** Inhaled glucocorticoids with low to moderate dose; none of the subjects received oral glucocorticoids
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Figure 1. 
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Figure 2.
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Figure 3. 
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Figure 3. Box plots of serum DKK1 and sclerostin concentrations in 17 WNT1 mutation-positive subjects (A–B) and 14

PLS3 mutation-positive subjects (C–F) compared with 34 age- and gender-matched mutation-negative subjects. MP =
mutation-positive, MN = mutation-negative, F = female, M = male. The PLS3 mutation-positive subjects harbor different

mutations: seven with heterozygous and two with hemizygous deletion c.73-24T>A (p.Asp25Alafs*17); one with

heterozygous and two with hemizygous duplication of exon 3; and one with heterozygous and one with hemizygous
nonsense mutation c.766C>T (p.Arg256*). All WNT1 mutation-positive subjects harbor a heterozygous missense

mutation c.652T>G (p.C218G). For figures B) and D) the scale has been adjusted for visual clarity, leaving one outlier

(123 pmol/L) outside the graph.
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Figure 4. 
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Supplemental data  
 
Supplemental Table 1. Clinical data for the 34 mutation-negative subjects. 
 

Subject, Family Gender Age 
(years) 

Number of 
peripheral 
fractures 

Vertebral 
compression 

fractures 

Prior osteoporosis 
medication, years 

since last dose 

Inhaled 
glucocorticoids* Postmenopausal 

MN-2, A F 9 1 NA No No No 
MN-6, F F 16 1 NA No No No 
MN-8, A F 19 5 NA No Yes No 
MN-9, D F 19 1 NA No Yes No 
MN-10, C F 22 2 NA No No No 
MN-12, A F 25 6 NA No No No 
MN-14, A F 31 2 NA No Yes No 
MN-15, A F 31 2 NA No Yes No 
MN-17, D F 34 0 NA No No No 
MN-18, A F 37 0 NA No No No 
MN-20, F F 39 8 NA No No No 
MN-24, C F 44 0 NA No Yes No 
MN-25, A F 49 0 NA No No No 
MN-26, D F 51 1 NA No No Yes 
MN-28, A F 57 0 NA No No Yes 
MN-30, D F 64 2 NA No No Yes 
MN-31, E F 64 0 NA No No Yes 
MN-1, C M 8 1 NA No No NA 
MN-3, C M 10 0 NA No No NA 
MN-4, A M 10 2 NA No No NA 
MN-5, A M 16 0 NA No No NA 
MN-7, D M 17 0 NA No No NA 
MN-11, A M 24 9 NA No No NA 
MN-13, A M 30 4 NA No No NA 
MN-16, A M 32 3 NA No No NA 
MN-19, D M 38 0 NA No Yes NA 
MN-21, D M 41 3 Yes Yes, 5 No NA 
MN-22, D M 41 1 NA No No NA 
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MN-23, B M 43 0 NA No No NA 
MN-27, A M 53 0 Yes No No NA 
MN-29, A M 59 1 NA No No NA 
MN-32, D M 68 0 NA No No NA 
MN-33, E M 69 0 Yes Yes, 11 No NA 
MN-34, B M 77 0 NA No No NA 

 
* Inhaled glucocorticoids with low to moderate dose; none of the subjects received oral glucocorticoids  
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Supplemental Table 2. Biochemical findings in 17 WNT1 and 14 PLS3 mutation-positive subjects and 34 mutation-negative subjects.  
 

Subject, 
Family 

Gender, 
Age (yrs) 

S-Ca-Ion 
(mmol/L) 

P-Pi 
(mmol/L) 

S-25OHD 
(nmol/L) 

1,25OH2D 
(pmol/L) 

S-PTH 
(pg/mL) 

P-ALP 
(U/L) 

P-CTX 
(ng/mL) 

S-PINP 
(µg/L) 

S-FGF23 
S-DKK1 

(pmol/L) 
S-Sclerostin 

(pmol/L) 
U-Pi/U-Crea 

(mmol/mmol) Intact 
(pg/mL) 

C-terminal 
(pmol/L) 

WNT1 mutation-positive subjects 

WNT1-1, A F, 11 1.26 1.26 90 173 22 258 1.79 820.00 42.0 2.36 37.4 8.9 1.82 

WNT1-2, A F, 13 1.32 1.32 75 140 24 122 1.35 N/A 66.4 11.02 13.2 20.2 0.99 

WNT1-3, A M, 13 1.25 1.25 112 94 8 247 2.95 852.00 77.3 2.01 30.9 15.3 1.90 

WNT1-4, A F, 17 1.25 1.25 116 96 31 77 0.56 43.40 75.5 1.42 27.3 19.5 2.51 

WNT1-5, A M, 19 1.27 1.27 31 168 22 83 0.45 76.10 32.9 6.17 17.2 20.6 2.33 

WNT1-6, A F, 34 1.24 1.24 105 45 40 84 0.15 38.21 63.8 1.51 34.8 14.0 15.09 

WNT1-7, A F, 44 1.32 1.32 82 67 25 51 0.10 39.79 51.0 5.71 27.2 33.9 1.30 

WNT1-8, A F, 48 1.22 1.22 125 98 28 51 0.20 34.59 81.2 2.33 32.7 22.8 1.10 

WNT1-9, A F, 52 1.44 1.44 64 127 82 86 0.84 85.26 52.3 1.04 22.9 16.0 2.41 

WNT1-10, A M, 52 1.24 1.24 74 172 24 50 0.20 25.01 54.7 1.31 27.7 16.9 1.60 

WNT1-11, A F, 53 1.21 1.21 102 103 36 47 0.11 14.69 68.7 1.85 23.5 16.4 1.10 

WNT1-12, A F, 54 1.22 1.22 136 123 31 74 0.71 68.92 46.1 0.71 35.8 19.9 2.25 

WNT1-13, A M, 63 1.24 1.24 146 114 29 52 0.11 30.74 66.1 1.18 19.7 24.6 1.17 

WNT1-14, B F, 68 1.20 1.20 80 119 44 52 0.12 36.47 49.5 0.29 58.9 19.2 1.30 

WNT1-15, A F, 71 1.24 1.24 88 124 18 72 0.20 37.79 41.2 0.81 26.8 15.8 2.05 

WNT1-16, A F, 74 1.25 1.25 97 72 22 48 0.15 22.16 73.4 0.78 33.5 20.1 1.15 

WNT1-17, A M, 76 1.28 1.28 89 88 48 84 0.16 28.30 54.9 1.52 13.3 34.0 0.96 

PLS3 mutation-positive subjects 

PLS3-1, D M, 8 1.34 1.43 77 162 18 262 1.21 332.00 34.6 0.79 31.3 7.7 1.18 

PLS3-2, C F, 11 1.24 1.13 61 189 19 146 2.20 796.00 51.8 0.73 64.0 21.4 1.62 

PLS3-3, C F, 14 1.26 1.45 61 115 34 307 0.69 206.80 47.2 0.75 35.2 16.3 0.84 

PLS3-4, C F, 15 1.26 1.31 34 186 31 100 0.69 75.82 56.8 1.68 60.1 17.5 N/A 

PLS3-5, D M, 21 1.27 1.39 55 185 41 103 0.73 76.71 37.3 1.04 28.2 27.9 2.20 

PLS3-6, E M, 32 1.25 1.03 69 138 31 73 0.29 30.20 65.6 1.79 53.0 25.7 1.73 

PLS3-7, D F, 41 1.27 0.89 46 91 36 89 0.06 23.22 48.6 1.51 28.0 5.0 1.70 
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PLS3-8, C F, 41 1.22 0.84 43 185 47 43 0.05 14.20 38.7 2.61 68.4 15.4 0.72 

PLS3-9, C M, 45 1.21 1.02 90 156 39 37 0.07 17.12 25.2 0.00 53.6 17.2 2.01 

PLS3-10, C F, 48 1.16 0.85 61 206 78 94 0.14 35.02 39.0 0.79 60.1 14.1 1.81 

PLS3-11, C F, 51 1.19 0.80 85 158 54 64 0.19 34.53 82.2 0.31 54.0 43.0 1.50 

PLS3-12, E F, 57 1.21 1.09 95 109 52 87 0.19 51.82 90.3 1.90 35.7 38.6 0.99 

PLS3-13, C F, 69 1.23 1.05 131 114 28 58 0.16 30.12 71.6 1.13 77.6 41.3 1.66 

PLS3-14, C M, 76 1.21 0.84 69 108 57 49 0.05 17.00 67.4 1.68 36.3 11.7 1.69 

Mutation-negative subjects 

MN-1, C M, 8 1.24 1.42 74 110 27 139 1.46 360.00 14.4 0.90 28.9 19.6 4.25 

MN-2, A F, 9 1.24 1.59 68 165 33 214 1.69 660.00 49.5 0.93 34.1 27.9 N/A 

MN-3, C M, 10 1.25 1.42 59 154 23 179 1.91 490.00 25.5 0.36 36.0 16.4 4.31 

MN-4, A M, 10 1.28 1.55 70 192 13 257 1.64 312.00 37.0 0.39 42.5 21.3 1.15 

MN-5, A M, 16 1.32 1.42 43 157 16 313 1.22 171.00 47.0 0.68 24.6 14.2 1.59 

MN-6, F F, 16 1.20 1.41 69 93 53 93 0.96 130.33 53.6 1.68 16.0 22.1 1.25 

MN-7, D M, 17 1.26 1.22 73 118 35 89 1.21 157.83 51.3 0.78 20.2 4.3 3.16 

MN-8, A F, 19 1.27 1.56 69 100 16 108 0.27 41.67 39.8 1.19 37.4 12.7 1.83 

MN-9, D F, 19 1.29 0.91 60 135 22 63 0.59 79.12 33.7 0.53 54.2 19.9 2.14 

MN-10, C F, 22 1.19 0.99 49 235 39 61 0.53 34.02 22.4 0.12 32.7 12.5 1.95 

MN-11, A M, 24 1.30 1.19 39 144 26 44 0.86 48.07 43.9 1.36 25.4 10.2 3.19 

MN-12, A F, 25 1.24 1.53 70 127 37 67 0.73 50.34 51.6 1.12 23.0 15.3 2.40 

MN-13, A M, 30 1.27 1.38 54 117 39 60 0.38 59.37 56.5 1.07 22.9 26.5 1.01 

MN-14, A F, 31 1.24 0.88 36 68 29 104 0.13 49.08 55.7 2.14 24.2 22.9 2.36 

MN-15, A F, 31 1.30 1.34 26 133 41 66 0.09 53.13 53.1 2.39 26.5 12.0 2.20 

MN-16, A M, 32 1.25 0.91 41 93 30 74 0.33 43.10 65.8 1.15 28.2 14.6 1.15 

MN-17, D F, 34 1.30 0.87 63 269 11 5 0.06 20.55 27.7 2.55 7.8 6.4 0.97 

MN-18, A F, 37 1.27 0.51 60 134 33 67 0.21 34.17 39.5 1.06 18.5 11.3 1.46 

MN-19, D M, 38 1.29 0.83 78 98 27 8 0.27 39.31 52.8 0.9 27.6 9.5 1.41 

MN-20, F F, 39 1.20 0.84 103 103 40 65 0.27 48.89 54.4 0.77 15.4 18.0 1.10 

MN-21, D M, 41 1.23 0.98 84 87 27 46 0.41 58.46 47.0 1.09 69.5 23.6 1.73 

MN-22, D M, 41 1.23 1.05 144 144 57 102 0.71 51.22 60.4 0.66 20.1 22.9 1.51 

MN-23, B M, 43 1.27 1.13 80 74 36 52 0.28 52.74 74.2 0.72 50.5 38.7 1.54 

MN-24, C F, 44 1.18 0.87 77 89 35 49 0.20 38.72 74.2 2.19 81.8 26.1 2.48 
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MN-25, A F, 49 1.22 0.84 90 83 46 61 0.15 31.21 43.7 2.46 35.7 26.9 1.24 

MN-26, D F, 51 1.16 1.27 65 93 56 48 0.27 47.99 32.3 0.53 4.4 29.5 2.75 

MN-27, A M, 53 1.22 1.05 73 57 56 63 0.27 38.77 61.2 1.57 16.6 24.6 2.32 

MN-28, A F, 57 1.28 1.09 39 109 50 50 0.62 70.13 41.2 0.69 44.6 14.5 2.67 

MN-29, A M, 59 1.26 1.08 21 71 31 83 0.22 47.42 77.8 2.61 39.6 26.2 2.18 

MN-30, D F, 64 1.28 1.25 73 143 21 75 0.27 35.59 60.1 0.82 27.1 16.8 2.86 

MN-31, E F, 64 1.18 0.85 112 112 49 73 0.17 27.01 74.4 1.21 58.1 39.0 1.76 

MN-32, D M, 68 1.30 0.79 74 122 35 59 0.28 38.74 42.3 0.98 24.7 16.5 N/A 

MN-33, E M, 69 1.16 0.84 89 119 29 64 0.12 31.49 53.4 0.36 28.8 24.2 1.80 

MN-34, B M, 77 1.28 1.02 87 64 36 94 0.29 23.01 60.9 0.08 37.3 123.0 0.87 

 
F = female, M = male, N/A = not available. Supranormal values are underlined and subnormal values are in bold. Normal ranges according to 
HUSLAB Laboratory (females/males): S-Ca-ion (serum ionized calcium) 1.16-1.3; P-Pi (phosphate) 2–12 years 1.2–1.8, 13–16 years 1.1–1.8, 17 
years 0.8–1.4, females >18 years 0.76–1.41, males 18–49 years 0.71–1.53, males >50 years 0.71–1.23; S-25OHD (vitamin D, nmol/L) >50; normal 
ranges for D-1,25 according to United Medix Laboratories Ltd (1.25-dihydroxyvitamin D) 48–190; ALP (alkaline phosphatase) 8–9 years 115–345, 
10–11 years 115–435/115–335, 12–13 years 90–335/125–405, 14–15 years 80–210/80–445, 16–18 years 35–125/55–330, >18 years 35–105. 
Normal ranges for PTH and CTX using the IDS-iSYS assay (Immunodiagnostic Systems, Ltd., Bolton, UK): PTH adults 11.5–78.4; CTX (collagen type 
1 cross-linked C-telopeptide) pre-menopausal females 0.034–0.635, post-menopausal females 0.034–1.037, males 0.038–0.724. Normal ranges 
for PINP (type I procollagen intact N-terminal propeptide) according to Morovat et al., 2013(42) (females/males): 5–8 years 307–985/200–900, 9–
12 years 386–1070/323–1242, 13–16 years 59.3–672/142–6929, 17–20 years 25.2–160/28.1–369, pre-menopausal women 13.7–71.1, post-
menopausal women 8.2–82.6, men 18–45 years 19.4–95.4, men >45 years 12.8–71.9.  
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