5 research outputs found

    Application of MobileNets Convolutional Neural Network Model in Detecting Tomato Late Blight Disease

    Get PDF
    Late blight (LB) disease causes significant annual losses in tomato production. Early identification of this disease is crucial in halting its severity. This study aimed to leverage the strength of Convolutional Neural Networks (CNNs) in automated prediction of tomato LB. Through transfer learning, the MobileNetV3 model was trained on high-quality, well-labeled images from Kaggle datasets. The trained model was tested on different images of healthy and infected leaves taken from different real-world locations in Mbeya, Arusha, and Morogoro. Test results demonstrated the model's success in identifying LB disease, with an accuracy of 81% and a precision of 76%. The trained model has the potential to be integrated into an offline mobile app for real-time use, improving the efficiency and effectiveness of LB disease detection in tomato production. Similar methods could also be applied to detect other tomato infections. Keywords:  MobileNets; convolutional neural networks; plant diseases detection; image classification; transfer learnin

    Blood-stage malaria vaccine candidate RH5.1/Matrix-M in healthy Tanzanian adults and children; an open-label, non-randomised, first-in-human, single-centre, phase 1b trial

    Get PDF
    Background: A blood-stage Plasmodium falciparum malaria vaccine would provide a second line of defence to complement partially effective or waning immunity conferred by the approved pre-erythrocytic vaccines. RH5.1 is a soluble protein vaccine candidate for blood-stage P falciparum, formulated with Matrix-M adjuvant to assess safety and immunogenicity in a malaria-endemic adult and paediatric population for the first time. Methods: We did a non-randomised, phase 1b, single-centre, dose-escalation, age de-escalation, first-in-human trial of RH5.1/Matrix-M in Bagamoyo, Tanzania. We recruited healthy adults (aged 18–45 years) and children (aged 5–17 months) to receive the RH5.1/Matrix-M vaccine candidate in the following three-dose regimens: 10 μg RH5.1 at 0, 1, and 2 months (Adults 10M), and the higher dose of 50 μg RH5.1 at 0 and 1 month and 10 μg RH5.1 at 6 months (delayed-fractional third dose regimen; Adults DFx). Children received either 10 μg RH5.1 at 0, 1, and 2 months (Children 10M) or 10 μg RH5.1 at 0, 1, and 6 months (delayed third dose regimen; Children 10D), and were recruited in parallel, followed by children who received the dose-escalation regimen (Children DFx) and children with higher malaria pre-exposure who also received the dose-escalation regimen (High Children DFx). All RH5.1 doses were formulated with 50 μg Matrix-M adjuvant. Primary outcomes for vaccine safety were solicited and unsolicited adverse events after each vaccination, along with any serious adverse events during the study period. The secondary outcome measures for immunogenicity were the concentration and avidity of anti-RH5.1 serum IgG antibodies and their percentage growth inhibition activity (GIA) in vitro, as well as cellular immunogenicity to RH5.1. All participants receiving at least one dose of vaccine were included in the primary analyses. This trial is registered at ClinicalTrials.gov, NCT04318002, and is now complete. Findings: Between Jan 25, 2021, and April 15, 2021, we recruited 12 adults (six [50%] in the Adults 10M group and six [50%] in the Adults DFx group) and 48 children (12 each in the Children 10M, Children 10D, Children DFx, and High Children DFx groups). 57 (95%) of 60 participants completed the vaccination series and 55 (92%) completed 22 months of follow-up following the third vaccination. Vaccinations were well-tolerated across both age groups. There were five serious adverse events involving four child participants during the trial, none of which were deemed related to vaccination. RH5-specific T cell and serum IgG antibody responses were induced by vaccination and purified total IgG showed in vitro GIA against P falciparum. We found similar functional quality (ie, GIA per μg RH5-specific IgG) across all age groups and dosing regimens at 14 days after the final vaccination; the concentration of RH5.1-specific polyclonal IgG required to give 50% GIA was 14·3 μg/mL (95% CI 13·4–15·2). 11 children were vaccinated with the delayed third dose regimen and showed the highest median anti-RH5 serum IgG concentration 14 days following the third vaccination (723 μg/mL [IQR 511–1000]), resulting in all 11 who received the full series showing greater than 60% GIA following dilution of total IgG to 2·5 mg/mL (median 88% [IQR 81–94]). Interpretation: The RH5.1/Matrix-M vaccine candidate shows an acceptable safety and reactogenicity profile in both adults and 5–17-month-old children residing in a malaria-endemic area, with all children in the delayed third dose regimen reaching a level of GIA previously associated with protective outcome against blood-stage P falciparum challenge in non-human primates. These data support onward efficacy assessment of this vaccine candidate against clinical malaria in young African children. Funding: The European and Developing Countries Clinical Trials Partnership; the UK Medical Research Council; the UK Department for International Development; the National Institute for Health and Care Research Oxford Biomedical Research Centre; the Division of Intramural Research, National Institute of Allergy and Infectious Diseases; the US Agency for International Development; and the Wellcome Trust

    Promoting universal financial protection: a case study of new management of community health insurance in Tanzania.

    Get PDF
    BACKGROUND: The National Health Insurance Fund (NHIF), a compulsory formal sector scheme took over the management of the Community Health Fund (CHF), a voluntary informal sector scheme, in 2009. This study assesses the origins of the reform, its effect on management and reporting structures, financial flow adequacy, reform communication and acceptability to key stakeholders, and initial progress towards universal coverage. METHODS: The study relied on national data sources and an in-depth collective case study of a rural and an urban district to assess awareness and acceptability of the reform, and fund availability and use relative to need in a sample of facilities. RESULTS: The reform was driven by a national desire to expand coverage and increase access to services. Despite initial delays, the CHF has been embedded within the NHIF organisational structure, bringing more intensive and qualified supervision closer to the district. National CHF membership has more than doubled. However, awareness of the reform was limited below the district level due to the reform's top-down nature. The reform was generally acceptable to key stakeholders, who expected that benefits between schemes would be harmonised.The reform was unable to institute changes to the CHF design or district management structures because it has so far been unable to change CHF legislation which also limits facility capacity to use CHF revenue. Further, revenue generated is currently insufficient to offset treatment and administration costs, and the reform did not improve the revenue to cost ratio. Administrative costs are also likely to have increased as a result of the reform. CONCLUSION: Informal sector schemes can benefit from merger with formal sector schemes through improved data systems, supervision, and management support. However, effects will be maximised if legal frameworks can be harmonised early on and a reduction in administrative costs is not guaranteed

    First results of phase 3 trial of RTS,S/AS01 malaria vaccine in african children

    Get PDF
    Background An ongoing phase 3 study of the efficacy, safety, and immunogenicity of candidate malaria vaccine RTS,S/AS01 is being conducted in seven African countries. Methods From March 2009 through January 2011, we enrolled 15,460 children in two age categories - 6 to 12 weeks of age and 5 to 17 months of age - for vaccination with either RTS,S/AS01 or a non-malaria comparator vaccine. The primary end point of the analysis was vaccine efficacy against clinical malaria during the 12 months after vaccination in the first 6000 children 5 to 17 months of age at enrollment who received all three doses of vaccine according to protocol. After 250 children had an episode of severe malaria, we evaluated vaccine efficacy against severe malaria in both age categories. Results In the 14 months after the first dose of vaccine, the incidence of first episodes of clinical malaria in the first 6000 children in the older age category was 0.32 episodes per person-year in the RTS,S/AS01 group and 0.55 episodes per person-year in the control group, for an efficacy of 50.4% (95% confidence interval [CI], 45.8 to 54.6) in the intention-to-treat population and 55.8% (97.5% CI, 50.6 to 60.4) in the per-protocol population. Vaccine efficacy against severe malaria was 45.1% (95% CI, 23.8 to 60.5) in the intention-to-treat population and 47.3% (95% CI, 22.4 to 64.2) in the per-protocol population. Vaccine efficacy against severe malaria in the combined age categories was 34.8% (95% CI, 16.2 to 49.2) in the per-protocol population during an average follow-up of 11 months. Serious adverse events occurred with a similar frequency in the two study groups. Among children in the older age category, the rate of generalized convulsive seizures after RTS,S/AS01 vaccination was 1.04 per 1000 doses (95% CI, 0.62 to 1.64). Conclusions The RTS,S/AS01 vaccine provided protection against both clinical and severe malaria in African children. (Funded by GlaxoSmithKline Biologicals and the PATH Malaria Vaccine Initiative; RTS,S ClinicalTrials.gov number, NCT00866619 .
    corecore