478 research outputs found

    Wild olive seed weevil, Anchonocranus oleae Marshall (Coleoptera: Curculionidae), in cultivated olives in South Africa

    Get PDF
    Wild olive seed weevil, Anchonocranus oleae Marshall, larvae as well as oviposition and feeding damage were recorded in cultivated olives during a recent study on olive seed wasps in South Africa. Prematurely dropped fruit and fruit picked at harvest in two orchards near Stellenbosch and Agter- Paarl were examined regularly for olive seed wasp infestation over three seasons. In addition, olives were collected over a wider area of the olive growing regions of the Western Cape province for a survey to determine olive seed wasp distribution. DNA barcoding confirmed the identity of weevil larvae in kernels as A. oleae. The number of A. oleae larvae found in olive seeds and the number of olives with weevil oviposition or feeding damage were low. The presence of larvae and weevil damage in two orchards in the survey with no wild olive trees in close proximity suggest that the weevil could breed and persist in cultivated olive orchards. Currently A. oleae is not of economic concern, but if infested olives are discarded at harvest and left in orchards, the weevils could complete their development in the kernels and numbers could increase to damaging levels

    Giant Conductance Oscillations In Mesoscopic Andreev Interferometers

    Full text link
    We analyze the electrical conductance G(ϕ)G(\phi) of a two-dimensional, phase coherent structure in contact with two superconductors, which is known to be an oscillatory function of the phase difference ϕ\phi between the superconductors. It is predicted that for a metallic sample, the amplitude of oscillation is enhanced by placing a normal barrier at the interface and that, by tuning the strength of the barrier, can be orders of magnitude greater than values observed in recent experiments. Giant oscillations can also be obtained without a barrier, provided a crucial sum rule is broken. This can be achieved by disorder induced normal scattering. In the absence of zero phase inter-channel scattering, the conductance possesses a zero phase minimum.Comment: 4 pages of Revtex, 6 figures available on reques

    Sign of the crossed conductances at a FSF double interface

    Full text link
    Crossed conductance in hybrid Ferromagnet / Superconductor / Ferromagnet (FSF) structures results from the competition between normal transmission and Andreev reflection channels. Crossed Andreev reflection (CAR) and elastic cotunneling (EC) between the ferromagnets are dressed by local Andreev reflections, which play an important role for transparent enough interfaces and intermediate spin polarizations. This modifies the simple result previously obtained at lowest order, and can explain the sign of the crossed resistances in a recent experiment [D. Beckmann {\sl et al.}, cond-mat/0404360]. This holds both in the multiterminal hybrid structure model (where phase averaging over the Fermi oscillations is introduced ``by hand'' within the approximation of a single non local process) and for infinite planar interfaces (where phase averaging naturally results in the microscopic solution with multiple non local processes).Comment: 9 pages, 7 figure

    The Interaction between the ISM and Star Formation in the Dwarf Starburst Galaxy NGC 4214

    Get PDF
    We present the first interferometric study of the molecular gas in the metal-poor dwarf starburst galaxy NGC 4214. Our map of the 12CO(1-0) emission, obtained at the OVRO millimeter array, reveals an unexpected structural wealth. We detected three regions of molecular emission in the north-west (NW), south-east (SE) and centre of NGC 4214 which are in very different and distinct evolutionary stages (total molecular mass: 5.1 x 10^6 M_sun). These differences are apparent most dramatically when the CO morphologies are compared to optical ground based and HST imaging: massive star formation has not started yet in the NW region; the well-known starburst in the centre is the most evolved and star formation in the SE complex started more recently. We derive a star formation efficiency of 8% for the SE complex. Using high--resolution VLA observations of neutral hydrogen HI and our CO data we generated a total gas column density map for NGC 4214 (HI + H_2). No clear correlation is seen between the peaks of HI, CO and the sites of ongoing star formation. This emphasizes the irregular nature of dwarf galaxies. The HI and CO velocities agree well, so do the H-alpha velocities. In total, we cataloged 14 molecular clumps in NGC 4214. Our results from a virial mass analysis are compatible with a Galactic CO-to-H_2 conversion factor for NGC 4214 (lower than what is usually found in metal-poor dwarf galaxies).Comment: accepted for publication in the AJ (February 2001), full ps file at: ftp://ftp.astro.caltech.edu/users/fw/ngc4214/walter_prep.p

    Mitogenomics of the Olive Seed Weevil, Anchonocranus oleae Marshall and Implications for Its Phylogenetic Position in Curculionidae

    Get PDF
    Anchonocranus oleae Marshall (Coleoptera: Curculionidae) is a seed-feeding weevil native to southern Africa; its larvae are known to develop in the fruits of the African Wild Olive and, more rarely, cultivated olives. The species has been mainly found in the Western Cape province of South Africa, but it has remained in relative obscurity because it does not seem to represent a current threat to commercial olive production. As part of an ongoing effort to produce baseline genetic data for olive-associated entomofauna in South Africa, we generated reference DNA barcodes for A. oleae collected from wild and cultivated olives and sequenced its mitogenome for assessment of the phylogenetic position of the species in the family Curculionidae. The mitochondrial phylogeny estimate indicated that A. oleae shares a common ancestor with Elaidobius (tribe Derelomini), but a definite and close relationship to this tribe and the precise tribal placement of A. oleae in the subfamily Curculioninae could not be inferred due to the lack of representative mitogenomes of other relevant curculionine tribes and genera. This study will assist future work on the DNA-based species identification, genetic diversity, and phylogenetic position of the genus Anchonocranus and related taxa

    Phase coherent transport in hybrid superconducting structures: the case of d-wave superconductors

    Full text link
    We examine the effect of d-wave symmetry on zero bias anomalies in normal-superconducting tunnel junctions and phase-periodic conductances in Andreev interferometers. In the presence of d-wave pairing, zero-bias anomalies are suppressed compared with the s-wave case. For Andreev interferometers with aligned islands, the phase-periodic conductance is insensistive to the nature of the pairing, whereas for non-aligned islands, the nature of the zero-phase extremum is reversed.Comment: 10 Pages, Revtex. 11 postscript figures available on reques

    Reflectionless tunneling in ballistic normal-metal--superconductor junctions

    Full text link
    We investigate the phenomenon of reflectionless tunneling in ballistic normal-metal--superconductor (NS) structures, using a semiclassical formalism. It is shown that applied magnetic field and superconducting phase difference both impair the constructive interference leading to this effect, but in a qualitatively different way. This is manifested both in the conductance and in the shot noise properties of the system considered. Unlike diffusive systems, the features of the conductance are sharp, and enable fine spatial control of the current, as well as single channel manipulations. We discuss the possibility of conducting experiments in ballistic semiconductor-superconductor structures with smooth interfaces and some of the phenomena, specific to such structures, that could be measured. A general criterion for the barrier at NS interfaces, though large, to be effectively transparent to pair current is obtained.Comment: published versio

    Dissipative Electron Transport through Andreev Interferometers

    Full text link
    We consider the conductance of an Andreev interferometer, i.e., a hybrid structure where a dissipative current flows through a mesoscopic normal (N) sample in contact with two superconducting (S) "mirrors". Giant conductance oscillations are predicted if the superconducting phase difference ϕ\phi is varied. Conductance maxima appear when ϕ\phi is on odd multiple of π\pi due to a bunching at the Fermi energy of quasiparticle energy levels formed by Andreev reflections at the N-S boundaries. For a ballistic normal sample the oscillation amplitude is giant and proportional to the number of open transverse modes. We estimate using both analytical and numerical methods how scattering and mode mixing --- which tend to lift the level degeneracy at the Fermi energy --- effect the giant oscillations. These are shown to survive in a diffusive sample at temperatures much smaller than the Thouless temperature provided there are potential barriers between the sample and the normal electron reservoirs. Our results are in good agreement with previous work on conductance oscillations of diffusive samples, which we propose can be understood in terms of a Feynman path integral description of quasiparticle trajectories.Comment: 24 pages, revtex, 12 figures in eps forma
    corecore