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Abstract 

Lithium niobate (LiNbO3) is used in applications such as in optoelectronics, surface acoustic wave devices and 

transducers. In this paper nano-patterning of LiNbO3 wafers at the wafer scale is investigated using a novel low cost 

and large-area nano-imprinting technique. The formation of nano-scale pillars is presented by nano-imprinting an 

ordered nickel etch mask by lift-off on a y-cut LiNbO3 wafer. The process lends itself to the development of novel 

sensors or high temperature nano-scale harvesting structures. Since one potential application for nano-pillars of 

piezoelectrics is energy harvesting, calculations of relevant figures of merit for LiNbO3 based composites are also 

presented. 
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1. INTRODUCTION 

Lithium niobate (LiNbO3) is a ferroelectric material that is used in a variety of applications including optical 

switching [1], integrated optical devices [2] and surface acoustic wave (SAW) filtering [1].  Lithium niobate also has 

potential as a high-temperature transducer material for applications such as acoustic measurements, ultrasonic drills 

and high temperature accelerometers [3,4,5]. The material possesses relatively large electro-mechanical coupling 

coefficients, a pre-requisite for efficient energy conversion, and an extremely high Curie temperature of 1142-

1210°C [4,6].  The upper operating temperature of a ferroelectric is typically half of the Curie temperature, hence 
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LiNbO3 based transducers have the potential to operate at temperatures of 600C, or even higher [7].  Transducers 

manufactured using high purity z-cut LiNbO3 single crystals have been successfully tested at temperatures up to 

1000ºC with no significant oxygen loss or resistance change at temperatures over 600 °C [6]. Cochran et al. created 

high temperature 1-3 piezocomposites consisting of relatively coarse 0.7mm diameter rods of z-cut LiNbO3 

embedded in a high temperature cement matrix using a dice and fill method. The transducer devices were tested at 

temperature of up to 360C for high temperature non-destructive testing applications [7]. Since the material is used in 

single crystal form it is anisotropic and the specific crystal cuts often employed for transducers are z-cut and 36 y-

cut [8].  Fraser et al. used a y-cut plate to create a shear-mode transducer [4]. 

Recently, there has been growing interest in creating nano-structures of piezoelectric or ferroelectric materials for 

applications related to energy harvesting. Nam Cha et al. [9] created piezoelectric ZnO based nano-wire generators 

for harvesting energy from acoustic vibrations. The ZnO nano-wires where grown by chemical vapour deposition and 

were ~10m long and 150nm in diameter. Su et al. [10] formed GaN nano-rods to harvest energy from mechanical 

vibrations at ambient temperatures for self-powered systems. The nano-rods were grown on a silicon substrate by 

plasma-assisted molecular beam epitaxy. The high Curie temperature of LiNbO3 makes it an interesting material for 

harvesting energy from mechanical vibrations at high temperatures. For example, macro scale plates of 36 y-cut 

LiNbO3 were investigated by Bedekar et al. [5] for harvesting applications above 500C.  The creation of nano-scale 

rods of lithium niobate is therefore of interest for high temperature energy harvesting applications, such as self-

powered near-engine or geothermal sensors [5].   

This paper therefore aims to use a novel nano-imprinting technique using a disposible master to generate large areas 

(wafer scale) of ordered lithium niobate nano-pillars. This approach is particularly suited to this material since high 

quality lithium niobate wafers and crystals are commercially available, unlike some other piezoelectric materials such 

as GaN or ZnO. Preliminary calculations of relevant figure of merit for energy harvesting are also presented for 

LiNbO3 based composites. 

 

2. NANOIMPRINTING LiNbO3 

Highly ordered arrays of nano-pillars were fabricated in LiNbO3 using nanoimprint lithography (NIL) with a lift-off 

process, providing a hard mask for successful dry etching of the substrate. The process has been initially 

demonstrated on silicon and GaN substrates [11, 12]. Figure 1 shows and outline of the process. A 4inch y-cut 

LiNbO3 wafer (Fig. 1a) was initially spin coated with a resist (Fig. 1b). A polyethylene terephthalate (PET) 
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disposable master [11] was then applied to imprint a positive nano-dot structure onto the LiNbO3 surface into the 

softer UV cured polymer resist (40nm depth).  The disposable master structures were made via laser interference 

photolithography [11] in a photoresist and transferred to nickel replicas by standard electroforming techniques. The 

pattern on the nickel was transferred to the surface of a PET film using a roll-to-roll UV replication process. This 

provides a large supply (100’s of metres) of ‘‘disposable masters’’ for nanoimprinting. The disposable master was 

applied to the resist using a simple hand roller (Fig. 1c), providing a route to low cost formation of large areas of 

nanosructured surfaces.  After UV curing the imprinted resist, the master was removed by hand (Fig. 1d), leaving a 

positive imprint on the lithium niobate substrate. Deposition of a second material, hydrogen silsesquioxane (HSQ), 

was carried out for the planarisation and in-filling of the imprinted relief (Fig. 1e).  The structure depth was ~200-

300nm as measured by a Dektak 6M system.  HSQ was selected for its low etching in O2 and is free of organic 

compounds.  The layer was then etched back to the imprint level by a CHF3 plasma (Plasmalab 80 RIE, Oxford 

Instruments Plasma Technology), with an O2 plasma etch for removal of the exposed imprint resist.  This allowed 

removal of the initial resist imprint, leaving a negative HSQ imprint pattern on the substrate surface (Fig. 1f). 

Ni was then deposited by electron beam evaporation (Edwards EB3) onto the negative imprint surface (Fig. 1g), 

followed by a conventional lift-off technique of a buffered oxide etch to reveal a metal nano-dot array on the LiNbO3 

surface (Fig. 1h).  Fig. 2 shows examples of the Ni nano-dot array on the surface of lithium niobate with nano-

structures of up to 350nm in height and a pitch of 600nm (equivalent to the master).  Since a hand roller was 

employed the process was easily applied across the whole 4inch wafer. Etch selectivity between the nickel dot mask 

array and the LiNbO3 substrate then allowed for the fabrication of LiNbO3 nano-pillars by dry etching.  The substrate 

was selectively removed using reactive ion etching (RIE) and inductive coupled plasma (ICP) etching tools (Oxford 

Instruments Plasma Technologies ICP180 system) with a hybrid of SF6/Ar gases (Fig.1i).  ICP etching of the LiNbO3 

has reached ~200nm/min at 1000W ICP with selectivity to Ni being ~10 [13].  The final nano-pillars of LiNbO3 

achieved by this NIL approach can be seen in Figs. 3 and 4. Typical nano-pillar heights achieved were 500nm to 1μm 

with a pitch equivalent to the imprint master (600nm).  

 

3. FIGURES OF MERIT OF LiNbO3 BASED COMPOSITES. 

One potential application for nano-structured piezoelectrics is energy harvesting. In the off-resonance mode, a 

material with high dij.gij product and high gij constant will generate a high voltage and power when the piezoceramic 

is usedfor energy harvesting and sensing [14].  To examine the potential for LiNbO3 based energy harvesting, 

calculations were carried out using the effective field method [15]. Room-temperature electromechanical constants of 
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single-domain LiNbO3 single crystal (3m class) were taken from [16]. Fig. 5 outlines the type of structure 

considered. We initially consider the case when the piezoelectric coefficient e22 (or d22) is effective along the OX3 

axis of the composite and we assume a square arrangement of rods with the crystallographic axes Xj of the single-

domain LiNbO3 rod oriented as follows: X1 || OX2, X2 || OX3 (i.e., parallel to the rod’s generatrix) and X3 || OX1. In 

this case we exploit the larger piezoelectric activity as a result of the e22 or d22 along the OX3 axis. The LiNbO3 rods 

can be embedded in a porous polymer represented as a matrix containing spherical air inclusions distributed regularly 

with the volume fraction (porosity) mp. The volume fraction of the LiNbO3 rods is m over the composite sample.  The 

predicted harvesting figure of merit, (
*

33Q )
2
 = d33.g33, in Fig. 6 are relatively large and are comparable to those 

achieved in 1–3s based on lead zirconate titanate (PZT). The material is lead free and also has very high Curie 

temperature. The high (
*

33Q )
2
 figure of merit is relatively surprising given the relatively low piezoelectric (dij) 

constant of the material (Fig 6a). However LiNbO3 exhibits relatively large  g33 values due it its low permittivity; 

which also leads to high (
*

33Q )
2
 values (Fig. 6b).   

 

4. CONCLUSIONS 

The work outlined here has presented the successful fabrication of nano-pillars in lithium niobate using a disposable 

master for nanoimprint lithography. The combination of using a disposable master available in large areas and using 

a simple hand roller provides a novel route to the formation of low-cost and large-area nanostructured surfaces. This 

work may be taken forward with investigations into the Ni mask thickness and its effects on the etched profile of 

LiNbO3 nano-pillars.  Our NIL approach allows for future investigations into nano-scaled structures in LiNbO3 for 

applications such as energy harvesting at elevated temperatures and optoelectronic devices. Preliminary modelling 

shows that LiNbO3 based systems have the potential to achieve relatively high (
*

33Q )
2
 as a result of the low 

permittivity of the material. 
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Figure 1. Schematic of nano-imprinting process (a-i) 
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Figure 2. SEM images of nickel resist on LiNbO3 (corresponding to Fig. 1h in schematic). 

 

 

   
 

 

Figure 3. LiNbO3 nano-pillars (corresponding to Fig. 1i in schematic) 
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Figure 4. LiNbO3 nano-pillars 

(corresponding to Fig. 1i in schematic)  

Fig. 5. Schematic of the 1–3-type SC-

based composite 
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(a)                                                                               (b) 

 

Fig. 6 

(a)  d*33 in pC / N at X2 || OX3 

(b) Squared figure of merit ( *

33Q )
2
 = d33.g33 (in 10

-15
 Pa

-1
)

 
of the 1–3 LiNbO3 single crystal / 

porous epoxy composite at X2 || OX3. 

 


