32 research outputs found

    The evolution of primate short-term memory

    Get PDF

    How chimpanzees (Pan troglodytes) perform in a modified emotional Stroop task

    Get PDF
    The emotional Stroop task is an experimental paradigm developed to study the relationship between emotion and cognition. Human participants required to identify the color of words typically respond more slowly to negative than to neutral words (emotional Stroop effect). Here we investigated whether chimpanzees (Pan troglodytes) would show a comparable effect. Using a touch screen, eight chimpanzees were trained to choose between two simultaneously presented stimuli based on color (two identical images with differently colored frames). In Experiment 1, the images within the color frames were shapes that were either of the same color as the surrounding frame or of the alternative color. Subjects made fewer errors and responded faster when shapes were of the same color as the frame surrounding them than when they were not, evidencing that embedded images affected target selection. Experiment 2, a modified version of the emotional Stroop task, presented subjects with four different categories of novel images: three categories of pictures of humans (veterinarian, caretaker, and stranger), and control stimuli showing a white square. Because visits by the veterinarian that include anaesthetization can be stressful for subjects, we expected impaired performance in trials presenting images of the veterinarian. For the first session, we found correct responses to be indeed slower in trials of this category. This effect was more pronounced for subjects whose last anaesthetization experience was more recent, indicating that emotional valence caused the slowdown. We propose our modified emotional Stroop task as a simple method to explore which emotional stimuli affect cognitive performance in nonhuman primates.PostprintPeer reviewe

    Chimpanzees (Pan troglodytes) show subtle signs of uncertainty when choices are more difficult

    Get PDF
    This research was supported by the European Research Council under the European Union's Seventh Framework Program ( FP7/2007-2013 )/ERC grant agreement no 609819, SOMICS.Humans can tell when they find a task difficult. Subtle uncertainty behaviors like changes in motor speed and muscle tension precede and affect these experiences. Theories of animal metacognition likewise stress the importance of endogenous signals of uncertainty as cues that motivate metacognitive behaviors. However, while researchers have investigated second-order behaviors like information seeking and declining difficult trials in nonhuman animals, they have devoted little attention to the behaviors that express the cognitive conflict that gives rise to such behaviors in the first place. Here we explored whether three chimpanzees would, like humans, show hand wavering more when faced with more difficult choices in a touch screen transitive inference task. While accuracy was very high across all conditions, all chimpanzees wavered more frequently in trials that were objectively more difficult, demonstrating a signature behavior which accompanies experiences of difficulty in humans. This lends plausibility to the idea that feelings of uncertainty, like other emotions, can be studied in nonhuman animals. We propose to routinely assess uncertainty behaviors to inform models of procedural metacognition in nonhuman animals.Publisher PDFPeer reviewe

    Information seeking about tool properties in great apes

    Get PDF
    M.B. was supported by a scholarship of the German National Academic Foundation. J.C. was supported by the “SOMICS” ERC Synergy grant (nr. 609819).Evidence suggests that great apes engage in metacognitive information seeking for food items. To support the claim that a domain-general cognitive process underlies ape metacognition one needs to show that selective information seeking extends to non-food items. In this study, chimpanzees (Pan troglodytes) and orangutans (Pongo abelii) either had to determine the location of a desired food item or a property of a non-food item (length of a tool). We manipulated whether subjects received prior information about the item’s location or property. During the test, subjects had the opportunity to seek the respective information. Results show that apes engaged in more information seeking when they had no prior knowledge. Importantly, this selective pattern of information seeking applied to food as well as to tools.Publisher PDFPeer reviewe

    Chimpanzee coordination and potential communication in a two-touchscreen turn-taking game

    Get PDF
    This research was supported by the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) / ERC grant agreement n° [609819], SOMICS.Recent years have seen a growing interest in the question of whether and how groups of nonhuman primates coordinate their behaviors for mutual benefit. On the one hand, it has been shown that chimpanzees in the wild and in captivity can solve various coordination problems. On the other hand, evidence of communication in the context of coordination problems is scarce. Here, we investigated how pairs of chimpanzees (Pan troglodytes) solved a problem of dynamically coordinating their actions for achieving a joint goal. We presented five pairs of chimpanzees with a turn-taking coordination game, where the task was to send a virtual target from one computer display to another using two touch-screens. During the joint practice of the game some subjects exhibited spontaneous gesturing. To address the question whether these gestures were produced to sustain coordination, we introduced a joint test condition in which we simulated a coordination break-down scenario: subjects appeared either unwilling or unable to return the target to their partner. The frequency of gesturing was significantly higher in these test trials than in the regular trials. Our results suggest that at least in some contexts chimpanzees can exhibit communicative behaviors to sustain coordination in joint action.Publisher PDFPeer reviewe

    Sound symbolic congruency detection in humans but not in great apes

    Get PDF
    This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy through EXC 2025/1 “Matters of Activity (MoA)” and by the “The Sound of Meaning (SOM)”, Pu 97/22-1,“Brain Signatures of Communication (BraSiCo)”, Pu 97/23-1, and “Phonological Networks (PhoNet)”, Pu 97/25-1. K.M. was supported by the Berlin School of Mind and Brain and by the Onassis foundation. M.A was supported by the “SOMICS” ERC Synergy grant (nr.609819). M.B was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 749229.Theories on the evolution of language highlight iconicity as one of the unique features of human language. One important manifestation of iconicity is sound symbolism, the intrinsic relationship between meaningless speech sounds and visual shapes, as exemplified by the famous correspondences between the pseudowords ‘maluma’ vs. ‘takete’ and abstract curved and angular shapes. Although sound symbolism has been studied extensively in humans including young children and infants, it has never been investigated in non-human primates lacking language. In the present study, we administered the classic “takete-maluma” paradigm in both humans (N = 24 and N = 31) and great apes (N = 8). In a forced choice matching task, humans but not great apes, showed crossmodal sound symbolic congruency effects, whereby effects were more pronounced for shape selections following round-sounding primes than following edgy-sounding primes. These results suggest that the ability to detect sound symbolic correspondences is the outcome of a phylogenetic process, whose underlying emerging mechanism may be relevant to symbolic ability more generally.Publisher PDFPeer reviewe

    Human adults prefer to cooperate even when it is costly

    Get PDF
    Funding: This research was supported by the European Research Council (ERC) under the European Union’s Seventh Framework Program [FP7/2007-2013/ERC Grant 609819], project SOMICS.Joint actions are cooperative activities where humans coordinate their actions to achieve individual and shared goals. While the motivation to engage in joint action is clear when a goal cannot be achieved by individuals alone, we asked whether humans are motivated to act together even when acting together is not necessary and implies incurring additional costs compared to individual goal achievement. Using a utility-based empirical approach, we investigated the extent of humans' preference for joint action over individual action, when the instrumental costs of performing joint actions outweigh the benefits. The results of five experiments showed that human adults have a stable preference for joint action, even if individual action is more effective to achieve a certain goal. We propose that such preferences can be understood as ascribing additional reward value to performing actions together.Publisher PDFPeer reviewe

    Bo-NO-bouba-kiki: picture-word mapping but no spontaneous sound symbolic speech-shape mapping in a language trained bonobo

    Get PDF
    Humans share the ability to intuitively map ‘sharp’ or ‘round’ pseudowords, such as ‘bouba’ versus ‘kiki’, to abstract edgy versus round shapes, respectively. This effect, known as sound symbolism, appears early in human development. The phylogenetic origin of this phenomenon, however, is unclear: are humans the only species capable of experiencing correspondences between speech sounds and shapes, or could similar effects be observed in other animals? Thus far, evidence from an implicit matching experiment failed to find evidence of this sound symbolic matching in great apes, suggesting its human uniqueness. However, explicit tests of sound symbolism have never been conducted with nonhuman great apes. In the present study, a language-competent bonobo completed a cross-modal matching-to-sample task in which he was asked to match spoken English words to pictures, as well as ‘sharp’ or ‘round’ pseudowords to shapes. Sound symbolic trials were interspersed among English words. The bonobo matched English words to pictures with high accuracy, but did not show any evidence of spontaneous sound symbolic matching. Our results suggest that speech exposure/comprehension alone cannot explain sound symbolism. This lends plausibility to the hypothesis that biological differences between human and nonhuman primates could account for the putative human specificity of this effect

    Bo-NO-bouba-kiki : picture-word mapping but no spontaneous sound symbolic speech-shape mapping in a language trained bonobo

    Get PDF
    This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy through EXC 2025/1 ‘Matters of Activity (MoA)’ and by the ‘The Sound of Meaning (SOM)’, Pu 97/22–1 and ‘Phonological Networks (PhoNet)’, Pu 97/25-1. K.M. was supported by the Berlin School of Mind and Brain, by the Onassis foundation, and by the Fyssen foundation. M.A. was supported by the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC grant agreement no. 609819, SOMICS.Humans share the ability to intuitively map ‘sharp’ or ‘round’ pseudowords, such as ‘bouba’ versus ‘kiki’, to abstract edgy versus round shapes, respectively. This effect, known as sound symbolism, appears early in human development. The phylogenetic origin of this phenomenon, however, is unclear: are humans the only species capable of experiencing correspondences between speech sounds and shapes, or could similar effects be observed in other animals? Thus far, evidence from an implicit matching experiment failed to find evidence of this sound symbolic matching in great apes, suggesting its human uniqueness. However, explicit tests of sound symbolism have never been conducted with nonhuman great apes. In the present study, a language-competent bonobo completed a cross-modal matching-to-sample task in which he was asked to match spoken English words to pictures, as well as ‘sharp’ or ‘round’ pseudowords to shapes. Sound symbolic trials were interspersed among English words. The bonobo matched English words to pictures with high accuracy, but did not show any evidence of spontaneous sound symbolic matching. Our results suggest that speech exposure/comprehension alone cannot explain sound symbolism. This lends plausibility to the hypothesis that biological differences between human and nonhuman primates could account for the putative human specificity of this effect.Publisher PDFPeer reviewe

    A comparative perspective on three primate species’ responses to a pictorial emotional Stroop task

    Get PDF
    This study was also supported (in part) by a grant from The David Bohnett Foundation, the Leo S. Guthman Fund, the Chauncey and Marion Deering McCormick Foundation, and, at the time of writing, L.M.H. was supported by the Women’s Board of Lincoln Park Zoo.The Stroop effect describes interference in cognitive processing due to competing cognitive demands. Presenting emotionally laden stimuli creates similar Stroop-like effects that result from participants’ attention being drawn to distractor stimuli. Here, we adapted the methods of a pictorial Stroop study for use with chimpanzees (N = 6), gorillas (N = 7), and Japanese macaques (N = 6). We tested all subjects via touchscreens following the same protocol. Ten of the 19 subjects passed pre-test training. Subjects who reached criterion were then tested on a standard color-interference Stroop test, which revealed differential accuracy in the primates’ responses across conditions. Next, to test for an emotional Stroop effect, we presented subjects with photographs that were either positively valenced (a preferred food) or negatively valenced (snakes). In the emotional Stroop task, as predicted, the primates were less accurate in trials which presented emotionally laden stimuli as compared to control trials, but there were differences in the apes’ and monkeys’ response patterns. Furthermore, for both Stroop tests, while we found that subjects’ accuracy rates were reduced by test stimuli, in contrast to previous research, we found no difference across trial types in the subjects’ response latencies across conditions.Publisher PDFPeer reviewe
    corecore