43 research outputs found

    The Strong Spectral Property of Graphs: Graph Operations and Barbell Partitions

    Full text link
    The utility of a matrix satisfying the Strong Spectral Property has been well established particularly in connection with the inverse eigenvalue problem for graphs. More recently the class of graphs in which all associated symmetric matrices possess the Strong Spectral Property (denoted GSSPG^{SSP}) were studied, and along these lines we aim to study properties of graphs that exhibit a so-called barbell partition. Such a partition is a known impediment to membership in the class GSSPG^{SSP}. In particular we consider the existence of barbell partitions under various standard and useful graph operations

    Working memory and spatial judgments: Cognitive load increases the central tendency bias

    Get PDF
    Previous work demonstrates that memory for simple stimuli can be biased by information about the category of which the stimulus is a member. Specifically, stimuli with values greater than the category’s average tend to be underestimated and stimuli with values less than the average are overestimated. This is referred to as the central tendency bias. This bias has been explained as an optimal use of both noisy sensory information and category information. In a largely separate literature, cognitive load experiments attempt to manipulate the available working memory of participants in order to observe its effect on choice or judgments. In three experiments, we demonstrate that participants under a high cognitive load exhibit a stronger central tendency bias than when under a low cognitive load. Although not anticipated at the outset, we also find that judgments exhibit an anchoring bias

    Working memory and spatial judgments: Cognitive load increases the central tendency bias

    Get PDF
    Previous work demonstrates that memory for simple stimuli can be biased by information about the category of which the stimulus is a member. Specifically, stimuli with values greater than the category’s average tend to be underestimated and stimuli with values less than the average are overestimated. This is referred to as the central tendency bias. This bias has been explained as an optimal use of both noisy sensory information and category information. In a largely separate literature, cognitive load experiments attempt to manipulate the available working memory of participants in order to observe its effect on choice or judgments. In three experiments, we demonstrate that participants under a high cognitive load exhibit a stronger central tendency bias than when under a low cognitive load. Although not anticipated at the outset, we also find that judgments exhibit an anchoring bias

    Working memory and spatial judgments: Cognitive load increases the central tendency bias

    Get PDF
    Previous work demonstrates that memory for simple stimuli can be biased by information about the category of which the stimulus is a member. Specifically, stimuli with values greater than the category’s average tend to be underestimated and stimuli with values less than the average are overestimated. This is referred to as the central tendency bias. This bias has been explained as an optimal use of both noisy sensory information and category information. In a largely separate literature, cognitive load experiments attempt to manipulate the available working memory of participants in order to observe its effect on choice or judgments. In three experiments, we demonstrate that participants under a high cognitive load exhibit a stronger central tendency bias than when under a low cognitive load. Although not anticipated at the outset, we also find that judgments exhibit an anchoring bias

    Strategies in activating lymphatic system on symptom distress and health-related quality of life in patients with heart failure: secondary analysis of a pilot randomized controlled trial

    Get PDF
    BackgroundAbnormal interstitial fluid accumulation remains the major cause for patients with heart failure (HF) to endure a myriad of distressing symptoms and a decline in their health-related quality of life (HRQoL). The lymphatic system is essential in regulating fluid balance within the interstitial compartment and has recently been recognized as an important target for the prevention and mitigation of congestion. This study aimed to investigate the effects of exercises in activating lymphatic system on symptom distress and HRQoL among patients with HF.Methods and resultsThis was a pre-determined, secondary analysis of the TOLF-HF [The-Optimal-Lymph-Flow for Heart Failure (TOLF-HF)] study, a two-arm pilot randomized controlled trial evaluating the preliminary effects of the lymphatic exercise intervention in enhancing interstitial decongestion among patients with HF. Participants were randomized to receive either a four-week TOLF-HF program in addition to standard care or standard care alone. The Chinese version of the Minnesota Living with Heart Failure Questionnaire (MLHFQ) was employed to measure symptom distress and HRQoL before and after the intervention. Data analyses included descriptive statistics, the independent sample t-test, Pearson’s chi-square test, the Mann-Whitney U test, and covariance analysis. Of the 66 patients enrolled, 60 completed the study. The study results exhibited that the TOLF-HF intervention were effective in alleviating both physical and psychological symptom distress. The intervention group yielded significantly lower MLHFQ total scores in comparison to the control group. The odd ratio of achieving meaningful improvement in HRQoL in TOLF-HF group was 2.157 times higher than those in the control group.ConclusionsThe TOLF-HF program focusing on activating lymphatic system was effective in alleviating physical and psychological symptom distress as well as improving HRQoL for patients with HF. The tolerability, feasibility, and effectiveness of the TOLF-HF intervention make it a promising intervention for patients to manage HF.Clinical Trial Registrationhttp://www.chictr.org.cn/index.aspx, identifier (ChiCTR2000039121)

    iPSC-derived neuronal models of PANK2-associated neurodegeneration reveal mitochondrial dysfunction contributing to early disease

    Get PDF
    Mutations in PANK2 lead to neurodegeneration with brain iron accumulation. PANK2 has a role in the biosynthesis of coenzyme A (CoA) from dietary vitamin B5, but the neuropathological mechanism and reasons for iron accumulation remain unknown. In this study, atypical patient-derived fibroblasts were reprogrammed into induced pluripotent stem cells (iPSCs) and subsequently differentiated into cortical neuronal cells for studying disease mechanisms in human neurons. We observed no changes in PANK2 expression between control and patient cells, but a reduction in protein levels was apparent in patient cells. CoA homeostasis and cellular iron handling were normal, mitochondrial function was affected; displaying activated NADH-related and inhibited FADH-related respiration, resulting in increased mitochondrial membrane potential. This led to increased reactive oxygen species generation and lipid peroxidation in patient-derived neurons. These data suggest that mitochondrial deficiency is an early feature of the disease process and can be explained by altered NADH/FADH substrate supply to oxidative phosphorylation. Intriguingly, iron chelation appeared to exacerbate the mitochondrial phenotype in both control and patient neuronal cells. This raises caution for the use iron chelation therapy in general when iron accumulation is absent

    Expression profiling of familial breast cancers demonstrates higher expression of FGFR2 in BRCA2-associated tumors

    Get PDF
    BackgroundBRCA1- and BRCA2-associated tumors appear to have distinct molecular signatures. BRCA1-associated tumors are predominantly basal-like cancers, whereas BRCA2-associated tumors have a predominant luminal-like phenotype. These two molecular signatures reflect in part the two cell types found in the terminal duct lobular unit of the breast. To elucidate novel genes involved in these two spectra of breast tumorigenesis we performed global gene expression analysis on breast tumors from germline BRCA1 and BRCA2 mutation carriers. Methodology Breast tumor RNAs from 7 BRCA1 and 6 BRCA2 mutation carriers were profiled using UHN human 19K cDNA microarrays. Supervised univariate analyses were conducted to identify genes differentially expressed between BRCA1 and BRCA2-associated tumors. Selected discriminatory genes were validated using real time reverse transcription polymerase chain reaction in the tumor RNAs, and/or by immunohistochemistry (IHC) or by in situ hybridization (ISH) on tissue microarrays (TMAs) containing an independent set of 58 BRCA1 and 64 BRCA2-associated tumors. Results Genes more highly expressed in BRCA1-associated tumors included stathmin, osteopontin, TGFβ2 and Jagged 1 in addition to genes previously identified as characteristic of basal-like breast cancers. BRCA2-associated cancers were characterized by the higher relative expression of FGF1 and FGFR2. FGFR2 protein was also more highly expressed in BRCA2-associated cancers (P = 0.004). SignificanceBRCA1-associated tumours demonstrated increased expression of component genes of the Notch and TGFβ pathways whereas the higher expression of FGFR2 and FGF1 in BRCA2-associated cancers suggests the existence of an autocrine stimulatory loop

    The development of a HAMstring InjuRy (HAMIR) index to mitigate injury risk through innovative imaging, biomechanics, and data analytics : Protocol for an observational cohort study

    Get PDF
    Background The etiology of hamstring strain injury (HSI) in American football is multi-factorial and understanding these risk factors is paramount to developing predictive models and guiding prevention and rehabilitation strategies. Many player-games are lost due to the lack of a clear understanding of risk factors and the absence of effective methods to minimize re-injury. This paper describes the protocol that will be followed to develop the HAMstring InjuRy (HAMIR) index risk prediction models for HSI and re-injury based on morphological, architectural, biomechanical and clinical factors in National Collegiate Athletic Association Division I collegiate football players. Methods A 3-year, prospective study will be conducted involving collegiate football student-athletes at four institutions. Enrolled participants will complete preseason assessments of eccentric hamstring strength, on-field sprinting biomechanics and muscle–tendon volumes using magnetic-resonance imaging (MRI). Athletic trainers will monitor injuries and exposure for the duration of the study. Participants who sustain an HSI will undergo a clinical assessment at the time of injury along with MRI examinations. Following completion of structured rehabilitation and return to unrestricted sport participation, clinical assessments, MRI examinations and sprinting biomechanics will be repeated. Injury recurrence will be monitored through a 6-month follow-up period. HAMIR index prediction models for index HSI injury and re-injury will be constructed. Discussion The most appropriate strategies for reducing risk of HSI are likely multi-factorial and depend on risk factors unique to each athlete. This study will be the largest-of-its-kind (1200 player-years) to gather detailed information on index and recurrent HSI, and will be the first study to simultaneously investigate the effect of morphological, biomechanical and clinical variables on risk of HSI in collegiate football athletes. The quantitative HAMIR index will be formulated to identify an athlete’s propensity for HSI, and more importantly, identify targets for injury mitigation, thereby reducing the global burden of HSI in high-level American football players. Trial Registration The trial is prospectively registered on ClinicalTrials.gov (NCT05343052; April 22, 2022)
    corecore