272 research outputs found

    A search for clusters and groups of galaxies on the line of sight towards 8 lensed quasars

    Full text link
    In this paper we present new ESO/VLT FORS1 and ISAAC images of the fields around eight gravitationally lensed quasars: CTQ414, HE0230-2130, LBQS1009-0252, B1030+074, HE1104-1805, B1359+154, H1413+117 and HE2149-2745. When available and deep enough, HST/WFPC2 data were also used to infer the photometric redshifts of the galaxies around the quasars. The search of galaxy overdensities in space and redshift, as well as a weak-shear analysis and a mass reconstruction are presented in this paper. We find that there are most probably galaxy groups towards CTQ414, HE0230-2130, B1359+154, H1413+117 and HE2149-2745, with a mass ~ 4x10^14 M_sol h^-1. Considering its photometric redshift, the galaxy group discovered in the field around HE1104-1805 is associated with the quasar rather than with the lensing potential.Comment: 14 pages, 11 figures(.jpg

    A Search for H2O in the Strongly Lensed QSO MG 0751+2716 at z=3.2

    Get PDF
    We present a search for 183 GHz H_2O(3_13-2_20) emission in the infrared-luminous quasar MG 0751+2716 with the NRAO Very Large Array (VLA). At z=3.200+/-0.001, this water emission feature is redshifted to 43.6 GHz. As opposed to the faint rotational transitions of HCN (the standard high-density tracer at high-z), H_2O(3_13-2_20) is observed with high maser amplification factors in Galactic star-forming regions. It therefore holds the potential to trace high-density star-forming regions in the distant universe. If indeed all star-forming regions in massively star-forming galaxies at z>3 have similar physical properties as e.g. the Orion or W49N molecular cloud cores, the flux ratio between the maser-amplified H_2O(3_13-2_20) and the thermally excited CO(1-0) transitions may be as high as factor of 20 (but has to be corrected by their relative filling factor). MG 0751+2716 is a strong CO(4-3) emitter, and therefore one of the most suitable targets to search for H_2O(3_13-2_20) at cosmological redshifts. Our search resulted in an upper limit in line luminosity of L'(H_2O) < 0.6 x 10^9 K km/s pc^2. Assuming a brightness temperature of T_b(H_2O) ~= 500 K for the maser emission and CO properties from the literature, this translates to a H_2O(3_13-2_20)/CO(4-3) area filling factor of less than 1%. However, this limit is not valid if the H_2O(3_13-2_20) maser emission is quenched, i.e. if the line is only thermally excited. We conclude that, if our results were to hold for other high-z sources, H_2O does not appear to be a more luminous alternative to HCN to detect high-density gas in star-forming environments at high redshift.Comment: 6 pages, 1 figure, to appear in ApJ (accepted May 19, 2006

    A New Approach to the Study of Stellar Populations in Early-Type Galaxies: K-band Spectral Indices and an Application to the Fornax Cluster

    Full text link
    New measurements of K-band spectral features are presented for eleven early-type galaxies in the nearby Fornax galaxy cluster. Based on these measurements, the following conclusions have been reached: (1) in galaxies with no signatures of a young stellar component, the K-band Na I index is highly correlated with both the optical metallicity indicator [MgFe]' and central velocity dispersion; (2) in the same galaxies, the K-band Fe features saturate in galaxies with sigma > 150 km/s while Na I (and [MgFe]') continues to increase; (3) [Si/Fe] (and possibly [Na/Fe]) is larger in all observed Fornax galaxies than in Galactic open clusters with near-solar metallicity; (4) in various near-IR diagnostic diagrams, galaxies with signatures of a young stellar component (strong Hbeta, weak [MgFe]') are clearly separated from galaxies with purely old stellar populations; furthermore, this separation is consistent with the presence of an increased number of M-giant stars (most likely to be thermally pulsating AGB stars); (5) the near-IR diagrams discussed here seem as efficient for detecting putatively young stellar components in early-type galaxies as the more commonly used age/metallicity diagnostic plots using optical indices (e.g Hbeta vs. [MgFe]').Comment: 47 pages, 16 figures, ApJ accepte

    The Near Infrared NaI Doublet Feature in M Stars

    Get PDF
    The NaI near-infrared doublet has been used to indicate the dwarf/giant population in composite systems, but its interpretation is still a contentious issue. In order to understand the behaviour of this controversial feature, we study the observed and synthetic spectra of cool stars. We conclude that the NaI infrared feature can be used as a dwarf/giant discriminator. We propose a modified definition of the NaI index by locating the red continuum at 8234 angstrons and by measuring the equivalent width in the range 8172-8197 angstrons, avoiding the region at lambda > 8197 angstrons, which contains VI, ZrI, FeI and TiO lines. We also study the dependence of this feature on stellar atmospheric parameters.Comment: 9 pages, (TeX file) + 7 Figures in Postscript format. Accepted for publication in The Astrophysical Journa

    Oxygen abundance in the Sloan Digital Sky Survey

    Full text link
    We present two samples of \hii galaxies from the Sloan Digital Sky Survey (SDSS) spectroscopic observations data release 3. The electron temperatures(TeT_e) of 225 galaxies are calculated with the photoionized \hii model and TeT_e of 3997 galaxies are calculated with an empirical method. The oxygen abundances from the TeT_e methods of the two samples are determined reliably. The oxygen abundances from a strong line metallicity indicator, such as R23R_{23}, PP, N2N2, and O3N2O3N2, are also calculated. We compared oxygen abundances of \hii galaxies obtained with the TeT_e method, R23R_{23} method, PP method, N2N2 method, and O3N2O3N2method. The oxygen abundances derived with the TeT_e method are systematically lower by \sim0.2 dex than those derived with the R23R_{23} method, consistent with previous studies based on \hii region samples. No clear offset for oxygen abundance was found between TeT_e metallicity and PP, N2N2 and O3N2O3N2 metallicity. When we studied the relation between N/O and O/H, we found that in the metallicity regime of \zoh > 7.95, the large scatter of the relation can be explained by the contribution of small mass stars to the production of nitrogen. In the high metallicity regime, \zoh > 8.2, nitrogen is primarily a secondary element produced by stars of all masses.Comment: 7 pages, 3 figures. A&A accepte

    Spitzer/IRS Imaging and Spectroscopy of the luminous infrared galaxy NGC 6052 (Mrk 297)

    Full text link
    We present photometric and spectroscopic data of the interacting starburst galaxy NGC 6052 obtained with the Spitzer Space Telescope. The mid-infrared (MIR) spectra of the three brightest spatially resolved regions in the galaxy are remarkably similar and are consistent with dust emission from young nearly coeval stellar populations. Analysis of the brightest infrared region of the system, which contributes ~18.5 % of the total 16\micron flux, indicates that unlike similar off-nuclear infrared-bright regions found in Arp 299 or NGC 4038/9, its MIR spectrum is inconsistent with an enshrouded hot dust (T > 300K) component. Instead, the three brightest MIR regions all display dust continua of temperatures less than ~ 200K. These low dust temperatures indicate the dust is likely in the form of a patchy screen of relatively cold material situated along the line of sight. We also find that emission from polycyclic aromatic hydrocarbons (PAHs) and the forbidden atomic lines is very similar for each region. We conclude that the ionization regions are self-similar and come from young (about 6 Myr) stellar populations. A fourth region, for which we have no MIR spectra, exhibits MIR emission similar to tidal tail features in other interacting galaxies.Comment: 20 pages in preprint form, estimated 7 pages in ApJ Aeptember 10, 2007, v666n 2 issue, six encapsulated postscript figure

    Reexamination of the Radial Abundance Gradient Break in NGC 3359

    Full text link
    In this contribution, we reexamine the radial oxygen abundance gradient in the strongly barred spiral galaxy NGC 3359, for which, using an imaging spectrophotometric technique, Martin & Roy detected a break near the effective radius of the galaxy. We have new emission line flux measurements of HII regions in NGC 3359 from spectra obtained with the Subaru telescope to further investigate this claim. We find that there are small systematic variations in the line ratios determined from narrow-band imaging as compared to our spectroscopic measurements. We derive and apply a correction to the line ratios found by Martin & Roy and statistically examine the validity of the gradient break proposed for NGC 3359 using recently developed metallicity diagnostics. We find that, with a high degree of confidence, a model with a break fits the data significantly better than one without it. This suggests that the presence of a strong bar in spiral galaxies can generate measurable changes in the radial distribution of metals.Comment: Accepted to A

    The N/O Plateau of Blue Compact Galaxies: Monte Carlo Simulations of the Observed Scatter

    Get PDF
    Chemical evolution models and Monte Carlo simulation techniques have been combined for the first time to study the distribution of blue compact galaxies on the N/O plateau. Each simulation comprises 70 individual chemical evolution models. For each model, input parameters relating to a galaxy's star formation history (bursting or continuous star formation, star formation efficiency), galaxy age, and outflow rate are chosen randomly from ranges predetermined to be relevant. Predicted abundance ratios from each simulation are collectively overplotted onto the data to test its viability. We present our results both with and without observational scatter applied to the model points. Our study shows that most trial combinations of input parameters, including a simulation comprising only simple models with instantaneous recycling, are successful in reproducing the observed morphology of the N/O plateau once observational scatter is added. Therefore simulations which include delay of nitrogen injection are no longer favored over those which propose that most nitrogen is produced by massive stars, if only the plateau morphology is used as the principal constraint. The one scenario which clearly cannot explain plateau morphology is one in which galaxy ages are allowed to range below 250 Myr. We conclude that the present data for the N/O plateau are insufficient by themselves for identifying the portion of the stellar mass spectrum most responsible for cosmic nitrogen production.Comment: 41 pages, 15 figures; accepted by ApJ, to appear Aug. 20, 200

    Gas and Dust in the Cloverleaf Quasar at Redshift 2.5

    Full text link
    We observed the upper fine structure line of neutral carbon, CI(2-1), the CO(3-2) line and the 1.2mm continuum emission from H1413+117 (Cloverleaf quasar, z=2.5) using the IRAM interferometer. Together with the detection of the lower fine structure line (Barvainis etal. 1997), the Cloverleaf quasar is now only the second extragalactic system, besides M82, where both carbon lines have convincingly been detected. Our analysis shows that the carbon lines are optically thin and have an excitation temperature of ~30 K. CO is subthermally excited and the observed line luminosity ratios are consistent with n(H2)=10^(3-4) cm^(-3) at Tkin=30-50 K. Using three independent methods (CI, dust, CO) we derive a total molecular gas mass (corrected for magnification) of M(H2)=1.2+/-0.3*10^(10) SM. Our observations suggest that the molecular disk extends beyond the region seen in CO(7-6) to a zone of more moderately excited molecular gas that dominates the global emission in CI and the low J CO lines.Comment: 5 pages, 3 figures; accepted by A&
    corecore