237 research outputs found

    Effect of electron-nuclear spin interactions on electron-spin qubits localized in self-assembled quantum dots

    Get PDF
    The effect of electron-nuclear spin interactions on qubit operations is investigated for a qubit represented by the spin of an electron localized in a self-assembled quantum dot. The localized electron wave function is evaluated within the atomistic tight-binding model. The magnetic field generated by the nuclear spins is estimated in the presence of an inhomogeneous environment characterized by a random nuclear spin configuration, by the dot-size distribution, by alloy disorder, and by interface disorder. Due to these inhomogeneities, the magnitude of the nuclear magnetic field varies from one qubit to another by the order of 100 G, 100 G, 10 G, and 0.1 G, respectively. The fluctuation of the magnetic field causes errors in exchange operations due to the inequality of the Zeeman splitting between two qubits. We show that the errors can be made lower than the quantum error threshold if an exchange energy larger than 0.1 meV is used for the operation.Comment: 15 pages, 2 figure

    Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots

    Get PDF
    The effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots grown on GaAs is investigated with an atomistic valence-force-field model and an empirical tight-binding model. By comparing a dot with and without a wetting layer, we find that the inclusion of the wetting layer weakens the strain inside the dot by only 1% relative change, while it reduces the energy gap between a confined electron and hole level by as much as 10%. The small change in the strain distribution indicates that strain relaxes only little through the thin wetting layer. The large reduction of the energy gap is attributed to the increase of the confining-potential width rather than the change of the potential height. First-order perturbation calculations or, alternatively, the addition of an InAs disk below the quantum dot confirm this conclusion. The effect of the wetting layer on the wave function is qualitatively different for the weakly confined electron state and the strongly confined hole state. The electron wave function shifts from the buffer to the wetting layer, while the hole shifts from the dot to the wetting layer.Comment: 14 pages, 3 figures, and 3 table

    Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures

    Get PDF
    Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are structurally and chemically compatible with the high-temperature synthesis of the PECVD-grown tubes. The techniques offer a wafer-scale process solution for integrating single PECVD-grown nanotubes into novel architectures that should accelerate their integration in 3D electronics in general. NASA can directly benefit from this technology for its extreme-environment planetary missions. Current Si transistors are inherently more susceptible to high radiation, and do not tolerate extremes in temperature. These novel 3D nanoscale architectures can form the basis for NEMS switches that are inherently less susceptible to radiation or to thermal extremes

    Strategien zur Reduktion der CT-Strahlendosis

    Get PDF
    Zusammenfassung: Die rasante technische Weiterentwicklung der CT hat in den letzten Jahren zu einer deutlichen Zunahme der diagnostischen Möglichkeiten geführt, mit dem Resultat, dass die CT-Untersuchungszahlen weltweit angestiegen sind. Dies hat ebenfalls Auswirkung auf die Strahlenexposition der Bevölkerung. Bis heute sind zahlreiche Publikationen erschienen, die gezeigt haben, dass eine Dosisreduktion erreicht werden kann, ohne dadurch die Bildqualität und Sensitivität der CT zu beeinträchtigen. Die Mehrzahl der Strategien zur Dosisoptimierung sind einfach anzuwenden und unabhängig von der Detektorkonfiguration des CT-Scanners. Im vorliegenden Übersichtsartikel werden die wichtigsten Methoden vorgestellt: indikationsabhängige Methoden (z.B. rechtfertigende Indikation, Reduktion der Röhrenspannung für die CT-Angiographie, Wahl von Kollimation und Pitchfaktor, Minimierung der Untersuchungsphasen, Senkung der Röhrenspannung und des -stroms für die Nativphase), herstellerabhängige Methoden (z.B. automatische Röhrenstrommodulation, adaptive Filter zur Reduktion des Bildrauschens, iterative Bildrekonstruktion) und allgemeine Methoden (z.B. Patientenzentrierung im Isozentrum der CT-Gantry, Reduktion der Scanlänge, Anwendung von Röntgenschutzmitteln, Reduktion der Röhrenspannung und/oder des -stroms für den CT-Planungsscan

    SPLEND1D, a reduced one-dimensional model to investigate the physics of plasma detachment

    Full text link
    Studying the process of divertor detachment and the associated complex interplay of plasma dynamics and atomic physics processes is of utmost importance for future fusion reactors. Whilst simplified analytical models exist to interpret the general features of detachment, they are limited in their predictive power, and complex 2D or even 3D codes are generally required to provide a self-consistent picture of the divertor. As an intermediate step, 1D models of the Scrape-Off Layer (SOL) can be particularly insightful as the dynamics are greatly simplified, while still self-consistently including various source and sink terms at play, as well as additional important effects such as flows. These codes can be used to shed light on the physics at play, to perform fast parameter scans, or to interpret experiments. In this paper, we introduce the SPLEND1D (Simulator of PLasma ENabling Detachment in 1D) code: a fast and versatile 1D SOL model. We present in detail the model that is implemented in SPLEND1D. We then employ the code to explore various elements of detachment physics for parameters typical of the Tokamak \`a Configuration Variable (TCV), including the atomic physics and other processes behind power and momentum losses, and explore the various hypotheses and free parameters of the model

    Electronic structure and thermoelectric properties of pnictogen-substituted ASn_(1.5)Te_(1.5) (A = Co, Rh, Ir) skutterudites

    Get PDF
    Substituting group 14 and 16 elements on the pnictogen site in the skutterudite structure yields a class of valence-precise ternary AX_(1.5)Y_(1.5) compounds (A = Co, Rh, Ir, X = Sn, Ge, and Y = S, Se, Te), in which X and Y form an ordered sub-structure. Compared with unfilled binary skutterudites, pnictogen-substituted phases exhibit extremely low lattice thermal conductivity due to increased structural complexity. Here, we investigate the role of the transition metal species in determining the electronic structure and transport properties of Asn_(1.5)Te_(1.5) compounds with A = Co, Rh, Ir. Density functional calculations using fully ordered structures reveal semiconducting behavior in all three compounds, with the band gap varying from 0.2 to 0.45 eV. In CoSn_(1.5)Te_(1.5), the electronic density of states near the gap is significantly higher than for A = Ir or Rh, leading to higher effective masses and higher Seebeck coefficients. Experimentally, Ir and Rh samples exhibit relatively large p-type carrier concentrations and degenerate semiconducting behavior. In contrast, CoSn_(1.5)Te_(1.5) shows mixed conduction, with n-type carriers dominating the Seebeck coefficient and light, high mobility holes dominating the Hall coefficient. zT values of up to 0.35 were obtained, and further improvement is expected upon optimization of the carrier concentration or with n-type doping

    Electrical carotid baroreceptor stimulation

    Get PDF
    Summary: The Barostim neoTM system is a novel implantable device that activates the carotid baroreflex. It decreases the sympathetic activity and inhibits the renin system, which results in reduced blood pressure and heart rate. In patients with resistant hypertension, electrically activation of the baroreflex leads to an average decrease in systolic blood pressure of 38, 36, 40 and 53mmHg at 1, 2, 3 and 4 years, respectively. Additionally, cardiac remodelling with reduced left ventricular mass and posterior wall thickness has been observed in long-term studies. In a limited number of patients with heart failure, baroreflex activation therapy leads to a decrease in muscle sympathetic nerve activity and to improved quality of life and functional capacities. The implantation procedure is safe and associated with risks comparable with those of other active implantable devices. Barostim neo is currently available in several European countries

    Mechanochemical synthesis and high temperature thermoelectric properties of calcium-doped lanthanum telluride La_(3−x)Ca_xTe_4

    Get PDF
    The thermoelectric properties from 300–1275 K of calcium-doped La_(3−x)Te_4 are reported. La_(3−x)Te_4 is a high temperature n-type thermoelectric material with a previously reported zT_(max) 1.1 at 1273 K and x = 0.23. Computational modeling suggests the La atoms define the density of states of the conduction band for La_(3−x)Te_4. Doping with Ca^(2+) on the La^(3+) site is explored as a means of modifying the density of states to improve the power factor and to achieve a finer control over the carrier concentration. High purity, oxide-free samples are produced by ball milling of the elements and consolidation by spark plasma sintering. Calcium substitution upon the lanthanum site was confirmed by a combination of Rietveld refinements of powder X-ray diffraction data and wave dispersive spectroscopy. A zT_(max) 1.2 is reached at 1273 K for the composition La_(2.2)Ca_(0.78)Te_4 and the relative increase compared to La_(3−x)Te_4 is attributed to the finer carrier concentration

    OntoGene in BioCreative II

    Full text link
    BACKGROUND: Research scientists and companies working in the domains of biomedicine and genomics are increasingly faced with the problem of efficiently locating, within the vast body of published scientific findings, the critical pieces of information that are needed to direct current and future research investment. RESULTS: In this report we describe approaches taken within the scope of the second BioCreative competition in order to solve two aspects of this problem: detection of novel protein interactions reported in scientific articles, and detection of the experimental method that was used to confirm the interaction. Our approach to the former problem is based on a high-recall protein annotation step, followed by two strict disambiguation steps. The remaining proteins are then combined according to a number of lexico-syntactic filters, which deliver high-precision results while maintaining reasonable recall. The detection of the experimental methods is tackled by a pattern matching approach, which has delivered the best results in the official BioCreative evaluation. CONCLUSION: Although the results of BioCreative clearly show that no tool is sufficiently reliable for fully automated annotations, a few of the proposed approaches (including our own) already perform at a competitive level. This makes them interesting either as standalone tools for preliminary document inspection, or as modules within an environment aimed at supporting the process of curation of biomedical literature

    The water regime of dwarf planet (1) Ceres

    Get PDF
    The traditional view of minor bodies in the (inner) Solar System is that they are split into icy comets and rocky asteroids. However this has been challenged by recent results, such as the discovery of comets on asteroidal orbits in the outer asteroid belt (between Mars and Jupiter) and the detection of water ice frost on the surface of asteroid (24) Themis. The discovery of water ice on the surface of asteroids has profound implications for how the Solar System formed, and challenges our ideas about the stability of ice in the inner Solar System. The study of volatiles in the asteroid belt places strong constraints on the temperature and composition distribution in the proto-planetary disk,and on possible sources of terrestrial water, and strongly constrains formation models of the early Solar System
    • …
    corecore