The thermoelectric properties from 300–1275 K of calcium-doped La_(3−x)Te_4 are reported. La_(3−x)Te_4 is a high temperature n-type thermoelectric material with a previously reported zT_(max) 1.1 at 1273 K and x = 0.23. Computational modeling suggests the La atoms define the density of states of the conduction band for La_(3−x)Te_4. Doping with Ca^(2+) on the La^(3+) site is explored as a means of modifying the density of states to improve the power factor and to achieve a finer control over the carrier concentration. High purity, oxide-free samples are produced by ball milling of the elements and consolidation by spark plasma sintering. Calcium substitution upon the lanthanum site was confirmed by a combination of Rietveld refinements of powder X-ray diffraction data and wave dispersive spectroscopy. A zT_(max) 1.2 is reached at 1273 K for the composition La_(2.2)Ca_(0.78)Te_4 and the relative increase compared to La_(3−x)Te_4 is attributed to the finer carrier concentration