239 research outputs found

    Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array

    Get PDF
    We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray bursts (GRBs) in the data set collected by the Testbed station of the Askaryan Radio Array (ARA) in 2011 and 2012. From 57 selected GRBs, we observed no events that survive our cuts, which is consistent with 0.12 expected background events. Using NeuCosmA as a numerical GRB reference emission model, we estimate upper limits on the prompt UHE GRB neutrino fluence and quasi-diffuse flux from 10710^{7} to 101010^{10} GeV. This is the first limit on the prompt UHE GRB neutrino quasi-diffuse flux above 10710^{7} GeV.Comment: 14 pages, 8 figures, Published in Astroparticle Physics Journa

    Observational Constraints on the Ultra-high Energy Cosmic Neutrino Flux from the Second Flight of the ANITA Experiment

    Get PDF
    The Antarctic Impulsive Transient Antenna (ANITA) completed its second long-duration balloon flight in January 2009, with 31 days aloft (28.5 live days) over Antarctica. ANITA searches for impulsive coherent radio Cherenkov emission from 200 to 1200 MHz, arising from the Askaryan charge excess in ultra-high energy neutrino-induced cascades within Antarctic ice. This flight included significant improvements over the first flight in the payload sensitivity, efficiency, and a flight trajectory over deeper ice. Analysis of in-flight calibration pulses from surface and sub-surface locations verifies the expected sensitivity. In a blind analysis, we find 2 surviving events on a background, mostly anthropogenic, of 0.97+-0.42 events. We set the strongest limit to date for 1-1000 EeV cosmic neutrinos, excluding several current cosmogenic neutrino models.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Observation of Ultra-high-energy Cosmic Rays with the ANITA Balloon-borne Radio Interferometer

    Full text link
    We report the observation of sixteen cosmic ray events of mean energy of 1.5 x 10^{19} eV, via radio pulses originating from the interaction of the cosmic ray air shower with the Antarctic geomagnetic field, a process known as geosynchrotron emission. We present the first ultra-wideband, far-field measurements of the radio spectral density of geosynchrotron emission in the range from 300-1000 MHz. The emission is 100% linearly polarized in the plane perpendicular to the projected geomagnetic field. Fourteen of our observed events are seen to have a phase-inversion due to reflection of the radio beam off the ice surface, and two additional events are seen directly from above the horizon.Comment: 5 pages, 5 figures, new figure adde

    First Constraints on the Ultra-High Energy Neutrino Flux from a Prototype Station of the Askaryan Radio Array

    Get PDF
    The Askaryan Radio Array (ARA) is an ultra-high energy (>1017>10^{17} eV) cosmic neutrino detector in phased construction near the South Pole. ARA searches for radio Cherenkov emission from particle cascades induced by neutrino interactions in the ice using radio frequency antennas (150800\sim150-800 MHz) deployed at a design depth of 200 m in the Antarctic ice. A prototype ARA Testbed station was deployed at 30\sim30 m depth in the 2010-2011 season and the first three full ARA stations were deployed in the 2011-2012 and 2012-2013 seasons. We present the first neutrino search with ARA using data taken in 2011 and 2012 with the ARA Testbed and the resulting constraints on the neutrino flux from 1017102110^{17}-10^{21} eV.Comment: 26 pages, 15 figures. Since first revision, added section on systematic uncertainties, updated limits and uncertainty band with improvements to simulation, added appendix describing ray tracing algorithm. Final revision includes a section on cosmic ray backgrounds. Published in Astropart. Phys.

    Ultra-Relativistic Magnetic Monopole Search with the ANITA-II Balloon-borne Radio Interferometer

    Full text link
    We have conducted a search for extended energy deposition trails left by ultra-relativistic magnetic monopoles interacting in Antarctic ice. The non-observation of any satisfactory candidates in the 31 days of accumulated ANITA-II flight data results in an upper limit on the diffuse flux of relativistic monopoles. We obtain a 90% C.L. limit of order 10^{-19}/(cm^2-s-sr) for values of Lorentz boost factor 10^{10}<gamma at the anticipated energy E=10^{16} GeV. This bound is stronger than all previously published experimental limits for this kinematic range.Comment: updated to version accepted by Phys. Rev.

    Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments

    Get PDF
    The primary science goal of the NASA-sponsored ANITA project is measurement of ultra-high energy neutrinos and cosmic rays, observed via radio-frequency signals resulting from a neutrino- or cosmic ray- interaction with terrestrial matter (atmospheric or ice molecules, e.g.). Accurate inference of the energies of these cosmic rays requires understanding the transmission/reflection of radio wave signals across the ice-air boundary. Satellite-based measurements of Antarctic surface reflectivity, using a co-located transmitter and receiver, have been performed more-or-less continuously for the last few decades. Satellite-based reflectivity surveys, at frequencies ranging from 2--45 GHz and at near-normal incidence, yield generally consistent reflectivity maps across Antarctica. Using the Sun as an RF source, and the ANITA-3 balloon borne radio-frequency antenna array as the RF receiver, we have also measured the surface reflectivity over the interval 200-1000 MHz, at elevation angles of 12-30 degrees, finding agreement with the Fresnel equations within systematic errors. To probe low incidence angles, inaccessible to the Antarctic Solar technique and not probed by previous satellite surveys, a novel experimental approach ("HiCal-1") was devised. Unlike previous measurements, HiCal-ANITA constitute a bi-static transmitter-receiver pair separated by hundreds of kilometers. Data taken with HiCal, between 200--600 MHz shows a significant departure from the Fresnel equations, constant with frequency over that band, with the deficit increasing with obliquity of incidence, which we attribute to the combined effects of possible surface roughness, surface grain effects, radar clutter and/or shadowing of the reflection zone due to Earth curvature effects.Comment: updated to match publication versio
    corecore