16 research outputs found

    RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA

    Get PDF
    Recognition of DNA and RNA molecules derived from pathogens or self-antigen is one way the mammalian immune system senses infection and tissue damage. Activation of immune signaling receptors by nucleic acids is controlled by limiting the access of DNA and RNA to intracellular receptors, but the mechanisms by which endosome-resident receptors encounter nucleic acids from the extracellular space are largely undefined. In this study, we show that the receptor for advanced glycation end-products (RAGE) promoted DNA uptake into endosomes and lowered the immune recognition threshold for the activation of Toll-like receptor 9, the principal DNA-recognizing transmembrane signaling receptor. Structural analysis of RAGE-DNA complexes indicated that DNA interacted with dimers of the outermost RAGE extracellular domains, and could induce formation of higher-order receptor complexes. Furthermore, mice deficient in RAGE were unable to mount a typical inflammatory response to DNA in the lung, indicating that RAGE is important for the detection of nucleic acids in vivo

    Opposing Roles of Membrane and Soluble Forms of the Receptor for Advanced Glycation End Products in Primary Respiratory Syncytial Virus Infection

    Get PDF
    Respiratory syncytial virus (RSV), a common respiratory pathogen in infants and the older population, causes pulmonary inflammation and airway occlusion that leads to impairment of lung function. Here, we have established a role for receptor for advanced glycation end products (RAGE) in RSV infection. RAGE-deficient (ager−/−) mice were protected from RSV-induced weight loss and inflammation. This protection correlated with an early increase in type I interferons, later decreases in proinflammatory cytokines, and a reduction in viral load. To assess the contribution of soluble RAGE (sRAGE) to RSV-induced disease, wild-type and ager−/− mice were given doses of sRAGE following RSV infection. Of interest, sRAGE treatment prevented RSV-induced weight loss and neutrophilic inflammation to a degree similar to that observed in ager−/− mice. Our work further elucidates the roles of RAGE in the pathogenesis of respiratory infections and highlights the opposing roles of membrane and sRAGE in modulating the host response to RSV infection

    IL-33 Mediates Lung Inflammation by the IL-6-Type Cytokine Oncostatin M

    No full text
    The interleukin-1 family member IL-33 participates in both innate and adaptive T helper-2 immune cell responses in models of lung disease. The IL-6-type cytokine Oncostatin M (OSM) elevates lung inflammation, Th2-skewed cytokines, alternatively activated (M2) macrophages, and eosinophils in C57Bl/6 mice in vivo. Since OSM induces IL-33 expression, we here test the IL-33 function in OSM-mediated lung inflammation using IL-33-/- mice. Adenoviral OSM (AdOSM) markedly induced IL-33 mRNA and protein levels in wild-type animals while IL-33 was undetectable in IL-33-/- animals. AdOSM treatment showed recruitment of neutrophils, eosinophils, and elevated inflammatory chemokines (KC, eotaxin-1, MIP1a, and MIP1b), Th2 cytokines (IL-4/IL-5), and arginase-1 (M2 macrophage marker) whereas these responses were markedly diminished in IL-33-/- mice. AdOSM-induced IL-33 was unaffected by IL-6-/- deficiency. AdOSM also induced IL-33R+ ILC2 cells in the lung, while IL-6 (AdIL-6) overexpression did not. Flow-sorted ILC2 responded in vitro to IL-33 (but not OSM or IL-6 stimulation). Matrix remodelling genes col3A1, MMP-13, and TIMP-1 were also decreased in IL-33-/- mice. In vitro, IL-33 upregulated expression of OSM in the RAW264.7 macrophage cell line and in bone marrow-derived macrophages. Taken together, IL-33 is a critical mediator of OSM-driven, Th2-skewed, and M2-like responses in mouse lung inflammation and contributes in part through activation of ILC2 cells

    Murine S100A9 induced inflammatory infiltrates are TLR4-independent.

    No full text
    <p>Adeno-murine S100A9, Adeno-null or PBS was administered intranasally into wild-type (C3H/HeOuj) and TLR4-defective (C3H/HeJ) mice. After 10 days, mice were euthanized and BAL fluids or lung tissue was collected for analysis. (A) Cells were obtained from the BAL fluids using cytospins, stained with diff-quik and the total cell counts, neutrophil counts and macrophage counts were recorded. (B) mIFNγ and mIL-6 expression in BAL fluid in wild type and TLR4 defective mice. (C) Western blot analyses of mS100A9 expression in BAL fluid in wild type and TLR4 defective mice. (D) H&E staining of paraffin fixed lung tissue (left panel), and pathology scores (right panel). Non-parametric Mann-Whitney test was used to determine statistical difference between two groups.</p

    Murine S100A9 induced lung inflammation is RAGE-independent.

    No full text
    <p>Wild type C57Bl/6 or C57Bl/6 <i>ager</i>-/- mice were challenged intranasally with PBS, or adeno-null or adeno-murine S100A9, after 8 days, mice were sacrificed and BAL fluids or lung tissue were collected for analysis. (A) Cells were obtained from the BAL fluids using cytospins, stained with diff-quik and the total cell counts, neutrophil counts and macrophage counts were recorded. (B) mIFNγ and mIL-6 proteins levels found in BAL fluids of wild type and <i>ager</i>-/- mice. (C) Western blot analysis of murine S100A9 levels in BAL fluids. (D) H&E staining of paraffin fixed lung tissue (left panel), and pathology scores (right panel). Non-parametric Mann-Whitney test was used to determine statistical difference between two groups.</p

    S100A9 Induced Inflammatory Responses Are Mediated by Distinct Damage Associated Molecular Patterns (DAMP) Receptors <i>In Vitro</i> and <i>In Vivo</i>

    No full text
    <div><p>Release of endogenous damage associated molecular patterns (DAMPs), including members of the S100 family, are associated with infection, cellular stress, tissue damage and cancer. The extracellular functions of this family of calcium binding proteins, particularly S100A8, S100A9 and S100A12, are being delineated. They appear to mediate their functions via receptor for advanced glycation endproducts (RAGE) or TLR4, but there remains considerable uncertainty over the relative physiological roles of these DAMPs and their pattern recognition receptors. In this study, we surveyed the capacity of S100 proteins to induce proinflammatory cytokines and cell migration, and the contribution RAGE and TLR4 to mediate these responses <i>in vitro</i>. Using adenoviral delivery of murine S100A9, we also examined the potential for S100A9 homodimers to trigger lung inflammation <i>in vivo</i>. S100A8, S100A9 and S100A12, but not the S100A8/A9 heterodimer, induced modest levels of TLR4-mediated cytokine production from human PBMC. In contrast, for most S100s including S100A9, RAGE blockade inhibited S100-mediated cell migration of THP1 cells and major leukocyte populations, whereas TLR4-blockade had no effect. Intranasal administration of murine S100A9 adenovirus induced a specific, time-dependent predominately macrophage infiltration that coincided with elevated S100A9 levels and proinflammatory cytokines in the BAL fluid. Inflammatory cytokines were markedly ablated in the TLR4-defective mice, but unexpectedly the loss of TLR4 signaling or RAGE-deficiency did not appreciably impact the S100A9-mediated lung pathology or the inflammatory cell infiltrate in the alveolar space. These data demonstrate that physiological levels of S100A9 homodimers can trigger an inflammatory response <i>in vivo</i>, and despite the capacity of RAGE and TLR4 blockade to inhibit responses <i>in vitro</i>, the response is predominately independent of both these receptors.</p></div
    corecore