1,508 research outputs found

    Economic Feasibility of Commercial Algae Oil Production in the United States

    Get PDF
    A Monte Carlo simulation model was constructed to analyze the economic feasibility of growing algae as a renewable fuel source. Increasing growth rates, pond water depth, oil content, and facility size are important for ensuring the economic viability of a commercial algae facility.algae, renewable, fuel, feedstock, microalgae, Agribusiness, Agricultural and Food Policy, Crop Production/Industries, Production Economics, Resource /Energy Economics and Policy, Risk and Uncertainty,

    The Future of Biofuels: An Economic Analysis of the Design and Operation of a Microalgae Facility in Texas and the Southwestern United States

    Get PDF
    The world of energy is changing. With rising energy costs and concerns over the supply of energy materials, more research is being conducted into alternative sources of fuel and microalgae is one of the sources being researched, although much research had been conducted on it as a part of the Aquatic Species Program from the 1970s to the early 1990s. With the emergence of microalgae as a source of alternative energy, the need for an economic analysis of microalgae has arisen. This research studies the economic feasibility of the design and operation of a microalgae production facility in two Texas locations (Pecos and Corpus Christi) and in southeastern New Mexico using a stochastic simulation model. It examines the production levels needed for the facility to be profitable and also some facility designs necessary for that profitability. It also measures several annual financial indicators so that potential investors have some estimates of the future profitability of the microalgae industry. The results show that for microalgae to become a viable commercial operation, production must be improved beyond the current levels and the levels suggested by the literature. Production needs to be at least 0.8 g/L/day with 40 percent oil content and 24 inches of water depth. Production must be improved through increasing growth rates and oil contents at greater water depths. Production can be improved through nutrient and carbon dioxide usage, two elements that are being heavily researched. Water usage will become a major focus because of the limited resources and the quantities necessary to operate a commercial-scale facility. With the necessary improvements in technology and research, microalgae could prove to be a viable source of alternative energy

    Chemical chaperone TUDCA prevents apoptosis and improves survival during polymicrobial sepsis in mice

    Get PDF
    Sepsis-induced lymphopenia is a major cause of morbidities in intensive care units and in populations with chronic conditions such as renal failure, diabetes, HIV and alcohol abuse. Currently, other than supportive care and antibiotics, there are no treatments for this condition. We developed an in vitro assay to understand the role of the ER-stress-mediated apoptosis process in lymphocyte death during polymicrobial sepsis, which was reproducible in in vivo mouse models. Modulating ER stress using chemical chaperones significantly reduced the induction of the pro-apoptotic protein Bim both in vitro and in mice. Furthermore, in a ‘two-hit’ pneumonia model in mice, we have been able to demonstrate that administration of the chemical chaperone TUDCA helped to maintain lymphocyte homeostasis by significantly reducing lymphocyte apoptosis and this correlated with four-fold improvement in survival. Our results demonstrate a novel therapeutic opportunity for treating sepsis-induced lymphopenia in humans

    Origin and Control of Chemoselectivity in Cytochrome c Catalyzed Carbene Transfer into Si–H and N–H bonds

    Get PDF
    A cytochrome c heme protein was recently engineered to catalyze the formation of carbon–silicon bonds via carbene insertion into Si–H bonds, a reaction that was not previously known to be catalyzed by a protein. High chemoselectivity toward C–Si bond formation over competing C–N bond formation was achieved, although this trait was not screened for during directed evolution. Using computational and experimental tools, we now establish that activity and chemoselectivity are modulated by conformational dynamics of a protein loop that covers the substrate access to the iron–carbene active species. Mutagenesis of residues computationally predicted to control the loop conformation altered the protein’s chemoselectivity from preferred silylation to preferred amination of a substrate containing both N–H and Si–H functionalities. We demonstrate that information on protein structure and conformational dynamics, combined with knowledge of mechanism, leads to understanding of how non-natural and selective chemical transformations can be introduced into the biological world

    Skeletal muscle measures and physical function in older adults with cancer: sarcopenia or myopenia?

    Get PDF
    BACKGROUND: Skeletal muscle loss, commonly known as sarcopenia, is highly prevalent in older adults and linked with adverse outcomes in cancer, yet the definition and role of sarcopenia remains uncertain. The aim of this study was to examine the association of Computerized Tomography (CT) assessed skeletal muscle measures with physical function in older adults with cancer. RESULTS: CTs for 185 patients were available. Median age 73 (IQR 68-76) and 56.5% female. After controlling for sex and BMI, we found no evidence that SMI was associated with physical function impairments. Both SMD and SMG were associated physical function impairments and higher values were associated with decreased limitations in instrumental activities of daily living (RR 0.84 [CI 0.73-0.96] and 0.94 [CI 0.89-0.99], respectively), climbing stairs (RR 0.84 [CI 0.76-0.94] and 0.91 [CI 0.87-0.96]), walking 1 block (RR 0.77 [CI 0.67-0.90] and 0.91 [CI 0.85-0.97]), and prolonged Timed Up and Go (RR 0.83 [CI 0.75-0.92] and 0.92 [CI 0.88-0.96]). MATERIALS AND METHODS: Using the Carolina Senior Registry, we identified patients with CT imaging performed within 60 days +/- of baseline geriatric assessment (GA). Skeletal muscle area and density (SMD) were analyzed from L3 lumbar segments. Muscle area and height (m2) were used to calculate skeletal muscle index (SMI). Skeletal Muscle Gauge (SMG) was created by multiplying SMI x SMD. CONCLUSIONS: Skeletal muscle mass as assessed from CT imaging was not associated with physical function impairments. Skeletal muscle radiodensity was more associated with physical function and may aid in identifying older adults at risk for functional impairments

    The persistence in the liver of residual duck hepatitis B virus covalently closed circular DNA is not dependent upon new viral DNA synthesis

    Get PDF
    AbstractResidual hepatitis B virus (HBV) DNA can be detected following the resolution of acute HBV infection. Our previous work using duck hepatitis B virus (DHBV) infected ducks, indicated that ~80% of residual DHBV DNA in the liver is in the covalently closed circular DNA (cccDNA) form, suggesting that viral DNA synthesis is suppressed. The current study asked more directly if maintenance of residual DHBV cccDNA is dependent upon ongoing viral DNA synthesis. Ducks that recovered from acute DHBV infection were divided into 2 groups and treated with the antiviral drug, Entecavir (ETV), or placebo. No major differences in the stability of cccDNA or levels of residual cccDNA were observed in liver biopsy tissues taken 95days apart from ETV treated and placebo control ducks. The data suggest that residual DHBV cccDNA is highly stable and present in a cell population with a rate of turnover similar to normal, uninfected hepatocytes

    Wood traits explain microbial but not termite‐driven decay in Australian tropical rainforest and savanna

    Get PDF
    1. Variation in decay rates across woody species is a key uncertainty in predicting the fate of carbon stored in deadwood, especially in the tropics. Quantifying the relative contributions of biotic decay agents, particularly microbes and termites, under different climates and across species with diverse wood traits could help explain this variation. 2. To fill this knowledge gap, we deployed woody stems from 16 plant species native to either rainforest (n = 10) or savanna (n = 6) in northeast Australia, with and without termite access. For comparison, we also deployed standardized, non-native pine blocks at both sites. We hypothesized that termites would increase rates of deadwood decay under conditions that limit microbial activity. Specifically, termite contributions to wood decay should be greater under dry conditions and in wood species with traits that constrain microbial decomposers. 3. Termite discovery of stems was surprisingly low with only 17.6% and 22.6% of accessible native stems discovered in the rainforest and savanna respectively. Contrary to our hypothesis, stems discovered by termites decomposed faster only in the rainforest. Termites discovered and decayed pine blocks at higher rates than native stems in both the rainforest and savanna. 4. We found significant variation in termite discovery and microbial decay rates across native wood species within the same site. Although wood traits explained 85% of the variation in microbial decay, they did not explain termite-driven decay. For stems undiscovered by termites, decay rates were greater in species with higher wood nutrient concentrations and syringyl:guiacyl lignin ratios but lower carbon concentrations and wood densities. 5. Synthesis. Ecosystem-scale predictions of deadwood turnover and carbon storage should account for the impact of wood traits on decomposer communities. In tropical Australia, termite-driven decay was lower than expected for native wood on the ground. Even if termites are present, they may not always increase decomposition rates of fallen native wood in tropical forests. Our study shows how the drivers of wood decay differ between Australian tropical rainforest and savanna; further research should test whether such differences apply world-wide

    AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons

    Get PDF
    Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha 2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. in contrast, AgRPa2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha 2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus

    A necroptosis-independent function of RIPK3 promotes immune dysfunction and prevents control of chronic LCMV infection

    Get PDF
    Necroptosis is a lytic and inflammatory form of cell death that is highly constrained to mitigate detrimental collateral tissue damageand impaired immunity. These constraints make it difficult to define the relevance of necroptosis in diseases such as chronic andpersistent viral infections and within individual organ systems. The role of necroptotic signalling is further complicated becauseproteins essential to this pathway, such as receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like(MLKL), have been implicated in roles outside of necroptotic signalling. We sought to address this issue by individually defining therole of RIPK3 and MLKL in chronic lymphocytic choriomeningitis virus (LCMV) infection. We investigated if necroptosis contributesto the death of LCMV-specific CD8+ T cells or virally infected target cells during infection. We provide evidence showing thatnecroptosis was redundant in the pathogenesis of acute forms of LCMV (Armstrong strain) and the early stages of chronic (Docilestrain) LCMV infection in vivo. The number of immune cells, their specificity and reactivity towards viral antigens and viral loads arenot altered in the absence of either MLKL or RIPK3 during acute and during the early stages of chronic LCMV infection. However, weidentified that RIPK3 promotes immune dysfunction and prevents control of infection at later stages of chronic LCMV disease. Thiswas not phenocopied by the loss of MLKL indicating that the phenotype was driven by a necroptosis-independent function ofRIPK3. We provide evidence that RIPK3 signaling evoked a dysregulated type 1 interferone response which we linked to animpaired antiviral immune response and abrogated clearance of chronic LCMV infectio
    corecore