18 research outputs found

    Effect of increased pCO2 on the planktonic metabolic balance during a mesocosm experiment in an Arctic fjord

    Get PDF
    The effect of ocean acidification on the balance between gross community production (GCP) and community respiration (CR) (i.e., net community production, NCP) of plankton communities was investigated in summer 2010 in Kongsfjorden, west of Svalbard. Surface water, which was characterized by low concentrations of dissolved inorganic nutrients and chlorophyll a (a proxy of phytoplankton biomass), was enclosed in nine mesocosms and subjected to eight pCO2 levels (two replicated controls and seven enhanced pCO2 treatments) for one month. Nutrients were added to all mesocosms on day 13 of the experiment, and thereafter increase of chlorophyll a was provoked in all mesocosms. No clear trend in response to increasing pCO2 was found in the daily values of NCP, CR, and GCP. For further analysis, these parameters were cumulated for the following three periods: phase 1 – end of CO2 manipulation until nutrient addition (t4 to t13); phase 2 – nutrient addition until the second chlorophyll a minimum (t14 to t21); phase 3 – the second chlorophyll a minimum until the end of this study (t22 to t28). A significant response was detected as a decrease of NCP with increasing pCO2 during phase 3. CR was relatively stable throughout the experiment in all mesocosms. As a result, the cumulative GCP significantly decreased with increasing pCO2 during phase 3. After the nutrient addition, the ratios of cumulative NCP to cumulative consumption of NO3 and PO4 showed a significant decrease during phase 3 with increasing pCO2. The results suggest that elevated pCO2 influenced cumulative NCP and stoichiometric C and nutrient coupling of the plankton community in a high-latitude fjord only for a limited period. However provided that there were some differences or weak correlations between NCP data based on different methods in the same experiment, this conclusion should be taken with caution

    Ocean acidification impacts on nitrogen fixation in the coastal western Mediterranean Sea

    Get PDF
    The effects of ocean acidification on nitrogen (N2) fixation rates and on the community composition of N2-fixing microbes (diazotrophs) were examined in coastal waters of the North-Western Mediterranean Sea. Nine experimental mesocosm enclosures of ∼50 m3 each were deployed for 20 days during June-July 2012 in the Bay of Calvi, Corsica, France. Three control mesocosms were maintained under ambient conditions of carbonate chemistry. The remainder were manipulated with CO2 saturated seawater to attain target amendments of pCO2 of 550, 650, 750, 850, 1000 and 1250 μatm. Rates of N2 fixation were elevated up to 10 times relative to control rates (2.00 ± 1.21 nmol L-1d-1) when pCO2 concentrations were >1000 μatm and pHT (total scale) < 7.74. Diazotrophic phylotypes commonly found in oligotrophic marine waters, including the Mediterranean, were not present at the onset of the experiment and therefore, the diazotroph community composition was characterised by amplifying partial nifH genes from the mesocosms. The diazotroph community was comprised primarily of cluster III nifH sequences (which include possible anaerobes), and proteobacterial (α and γ) sequences, in addition to small numbers of filamentous (or pseudo-filamentous) cyanobacterial phylotypes. The implication from this study is that there is some potential for elevated N2 fixation rates in the coastal western Mediterranean before the end of this century as a result of increasing ocean acidification. Observations made of variability in the diazotroph community composition could not be correlated with changes in carbon chemistry, which highlights the complexity of the relationship between ocean acidification and these keystone organisms

    Technical note: An autonomous flow-through salinity and temperature perturbation mesocosm system for multi-stressor experiments

    Get PDF
    The rapid environmental changes in aquatic systems as a result of anthropogenic forcings are creating a multitude of challenging conditions for organisms and communities. The need to better understand the interaction of environmental stressors now, and in the future, is fundamental to determining the response of ecosystems to these perturbations. This work describes an automated ex situ mesocosm perturbation system that can manipulate several variables of aquatic media in a controlled setting. This perturbation system was deployed in Kongsfjorden (Svalbard); within this system, ambient water from the fjord was heated and mixed with freshwater in a multifactorial design to investigate the response of mixed-kelp communities in mesocosms to projected future Arctic conditions. The system employed an automated dynamic offset scenario in which a nominal temperature increase was programmed as a set value above real-time ambient conditions in order to simulate future warming. A freshening component was applied in a similar manner: a decrease in salinity was coupled to track the temperature offset based on a temperature–salinity relationship in the fjord. The system functioned as an automated mixing manifold that adjusted flow rates of warmed and chilled ambient seawater, with unmanipulated ambient seawater and freshwater delivered as a single source of mixed media to individual mesocosms. These conditions were maintained via continuously measured temperature and salinity in 12 mesocosms (1 control and 3 treatments, all in triplicate) for 54 d. System regulation was robust, as median deviations from nominal conditions were &lt; 0.15 for both temperature (∘C) and salinity across the three replicates per treatment. Regulation further improved during a second deployment that mimicked three marine heat wave scenarios in which a dynamic temperature regulation held median deviations to &lt; 0.036 ∘C from the nominal value for all treatment conditions and replicates. This perturbation system has the potential to be implemented across a wide range of conditions to test single or multi-stressor drivers (e.g., increased temperature, freshening, and high CO2) while maintaining natural variability. The automated and independent control for each experimental unit (if desired) provides a large breadth of versatility with respect to experimental design.</p

    High-frequency, year-round time series of the carbonate chemistry in a high-Arctic fjord (Svalbard)

    No full text
    The Arctic Ocean is subject to high rates of ocean warming and acidification, with critical implications for marine organisms as well as ecosystems and the services they provide. Carbonate system data in the Arctic realm are spotty in space and time, and, until recently, there was no time-series station measuring the carbonate chemistry at high frequency in this region, particularly in coastal waters. We report here on the first high-frequency (1 h), multi-year (5 years) dataset of salinity, temperature, CO2 partial pressure (pCO2) and pH at a coastal site (bottom depth of 12 m) in a high-Arctic fjord (Kongsfjorden, Svalbard). Discrete measurements of dissolved inorganic carbon and total alkalinity were also performed. We show that (1) the choice of formulations for calculating the dissociation constants of the carbonic acid remains unsettled for polar waters, (2) the water column is generally somewhat stratified despite the shallow depth, (3) the saturation state of calcium carbonate is subject to large seasonal changes but never reaches undersaturation (Ωa ranges between 1.4 and 3.0) and (4) pCO2 is lower than atmospheric CO2 at all seasons, making this site a sink for atmospheric CO2 (−9 to −16.8 , depending on the parameterisation of the gas transfer velocity). Data are available on PANGAEA: https://doi.org/10.1594/PANGAEA.960131 (Gattuso et al., 2023a)

    Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less

    No full text
    Larvae of the Mediterranean pteropod Cavolinia inflexa were maintained at controlled pH(T) values of 8.1, 7.82 and 7.51, equivalent, respectively, to pCO(2) levels of 380, 857 and 1,713 mu atm. At pH(T) 7.82, larvae exhibited malformations and lower shell growth, compared to the control condition. At pH(T) 7.51, the larvae did not make shells but were viable and showed a normal development. However, smaller shells or no shells will have both ecological (food web) and biogeochemical (export of carbon and carbonate) consequences. These results suggest that pteropod larvae, as well as the species dependent upon them or upon adults as a food resource, might be significantly impacted by ocean acidification

    Effects of ocean acidification on overwintering juvenile Arctic pteropods Limacina helicina

    No full text
    International audiencePteropods are planktonic mollusks that play an important role in the food web of various ecosystems, particularly at high latitudes. Because they produce an aragonitic shell, ptero pods are expected to be very sensitive to ocean acidification driven by anthropogenic CO2 emissions. The effect of ocean acidification was investigated using juveniles of the Arctic pteropod Limacina helicina from the Canada Basin of the Arctic Ocean. The animals were maintained in 3 controlled pH conditions (total scale pH [pH(T)] approximate to 8.05, 7.90 or 7.75) for 8 d, and their mortality and the linear extension of their shell were monitored. The pH did not impact the mortality rate, but the linear extension of the shell decreased as a function of declining pH. Surprisingly, the ptero pods were still able to extend their shell at an aragonite saturation state as low as 0.6. Nevertheless, dissolution marks were visible on the whole shell, indicating that calcium carbonate dissolution had also occurred, casting doubts on the ability of the pteropods to maintain a positive balance between precipitation and dissolution of calcium carbonate under corrosive conditions

    Comparison of the alkalinity and calcium anomaly techniques to estimate rates of net calcification

    No full text
    International audienc

    Effects of in situ CO 2 enrichment on epibiont settlement on artificial substrata within a Posidonia oceanica meadow

    No full text
    International audienceAlterations to colonization or early post-settlement stages may cause the reorganization of communities under future ocean acidification conditions. Yet, this hypothesis has been little tested by in situ pH manipulation. A Free Ocean Carbon Dioxide Enrichment (FOCE) system was used to lower pH by a ~ 0.3 unit offset within a partially enclosed portion (1.7 m3) of a Posidonia oceanica seagrass meadow (11 m depth) between 21 June and 3 November 2014. Epibiont colonization and early post settlement stages were assessed within the FOCE setup, as part of the larger community-level study, to better understand the outcome for a multispecies assemblage and the ecological processes that result in reported community shifts under altered carbonate chemistry. Two types of artificial collectors (tiles and scourers) were placed within three treatments: a pH-manipulated enclosure, an un-manipulated control enclosure, and an open plot in the ambient meadow. Tiles and scourers were collected after one to four months. Additionally, to see whether the outcome differed for communities in a later successional stage, previously settled scourer-collectors were also placed in the same three treatments. Enclosures acted to reduce settlement and migrant colonization. Scourers deployed for one to four months within the open-plot contained a community assemblage that could be distinguished from the assemblages within the enclosures. However, a comparison of enclosure assemblages on tiles showed evidence of a pH effect. There was lowered coverage of crustose coralline algae and fewer calcareous tube-forming polychaetes (Spirorbis sp. and Spirobranchus sp.) on tiles placed in the pH-manipulated enclosure compared to the un-manipulated enclosure. For assemblages in scourer collectors, shared and common taxa, in all treatments, were invertebrate polychaetes Psamathe fusca, Sphaerosyllis sp., Chrysopetalum sp., arthropods Harpacticoida, and Amphipoda, and the juvenile bivalve Lyonsia sp. Similar organism composition and abundance, as well as taxonomic richness and evenness, were found in scourers from both enclosures. Pre-settled scourers contained greater numbers of individuals and more calcified members, but the assemblage, as well as the growth rate of a juvenile bivalve Lyonsia sp., appeared unaffected by a two-month exposure to lowered pH and calcium carbonate saturation state. Results from this case study support the hypothesis that early stages of specific calcifiers (crustose coralline algae and calcareous tube-forming polychaetes) are sensitive to near future ocean acidification conditions yet suggest that negative effects on sessile micro-invertebrate assemblages will be minimal

    Cascading effects of ocean acidification in a rocky subtidal community

    No full text
    Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing) and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae) and their grazers (sea urchins). Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma) macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 matm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness). There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle\u2019s lantern size. In a future scenario of ocean acidification a decrease of sea urchins\u2019 density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins\u2019 diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to assemblages dominated by fleshy macroalgae

    First mesocosm experiments to study the impacts of ocean acidification on plankton communities in the NW Mediterranean Sea (MedSeA project)

    Full text link
    There is a growing international interest in studying the effects of ocean acidification on plankton communities that play a major role in the global carbon cycle and in the consumption of atmospheric CO2 via the so-called biological pump. Recently, several mesocosm experiments reported on the effect of ocean acidification on marine plankton communities, although the majority were performed in eutro- phic conditions or following nutrient addition. The objective of the present study was to perform two mesocosm experiments in the oligo- to meso-trophic Northwestern Mediterranean Sea during two seasons with contrasting environmental conditions: in summer 2012 in the Bay of Calvi (Corsica, France) and in winter 2013 in the Bay of Villefranche (France). This paper describes the objectives of these ex- periments, the study sites, the experimental set-up and the environmental and experimental conditions during the two experiments. The 20-day experiment in the Bay of Calvi was undoubtedly representative of summer conditions in the Northwestern Mediterranean Sea with low nutrient and chlorophyll a concentrations, warm waters and high surface solar irradiance. In contrast, the winter experiment, which was reduced to 12 days because of bad weather conditions, failed to reproduce the mesotrophic con- ditions typical of the wintertime in this area. Indeed, a rapid increase in phytoplankton biomass during the acidification phase led to a strong decrease in nitrate concentrations and an unrealistic N and P co- limitation at this period of the year. An overview of the 11 other papers related to this study and pub- lished in this special issue is provided.MEDiterranean Sea Acidification in a changing climat
    corecore