2 research outputs found
Interstitial carbon in bcc HfNbTiVZr high-entropy alloy from first principles
The remarkable mechanical properties of high-entropy alloys can be further improved by interstitial alloying. In this work we employ density functional theory calculations to study the solution energies of dilute carbon interstitial atoms in tetrahedral and octahedral sites in bcc HfNbTiVZr. Our results indicate that carbon interstitials in tetrahedral sites are unstable, and the preferred octahedral sites present a large spread in the energy of solution. The inclusion of carbon interstitials induces large structural relaxations with long-range effects. The effect of local chemical environment on the energy of solution is investigated by performing a local cluster expansion including studies of its correlation with the carbon atomic Voronoi volume. However, the spread in solution energetics cannot be explained with a local environment analysis only pointing towards a complex, long-range influence of interstitial carbon in this alloy
Novel Class of Rhenium Borides Based on Hexagonal Boron Networks Interconnected by Short B-2 Dumbbells
Transition metal borides are known due to their attractive mechanical, electronic, refractive, and other properties. A new class of rhenium borides was identified by synchrotron single-crystal X-ray diffraction experiments in laser-heated diamond anvil cells between 26 and 75 GPa. Recoverable to ambient conditions, compounds rhenium triboride (ReB3) and rhenium tetraboride (ReB4) consist of close-packed single layers of rhenium atoms alternating with boron networks built from puckered hexagonal layers, which link short bonded (similar to 1.7 angstrom) axially oriented B-2 dumbbells. The short and incompressible Re-B and B-B bonds oriented along the hexagonal c-axis contribute to low axial compressibility comparable with the linear compressibility of diamond. Sub-millimeter samples of ReB3 and ReB4 were synthesized in a large-volume press at pressures as low as 33 GPa and used for material characterization. Crystals of both compounds are metallic and hard (Vickers hardness, H-V = 34(3) GPa). Geometrical, crystal-chemical, and theoretical analysis considerations suggest that potential ReBx compounds with x > 4 can be based on the same principle of structural organization as in ReB3 and ReB4 and possess similar mechanical and electronic properties