279 research outputs found

    Air-Coupled Ultrasonic Transducers for the Detection of Defects in Plates

    Get PDF
    In order to minimise the problems due to the acoustic impedance mismatch between solids and air, the non destructive testing of materials using ultrasonic transducers generally requires either contact transducers or immersion transducers to be used [1]. Air-coupled transducers however would be very advantageous for testing structures which must be not contaminated with couplant and also for all in-situ industrial applications. Although the propagation of ultrasonic waves from laser generation [2] involves air-coupling, the difficulties due to the experimental set-up of this technique and the financial investment it implies are two major disadvantages

    Denying humanness to victims: How gang members justify violent behavior

    Get PDF
    The high prevalence of violent offending amongst gang-involved youth has been established in the literature. Yet the underlying psychological mechanisms that enable youth to engage in such acts of violence remain unclear. 189 young people were recruited from areas in London, UK, known for their gang activity. We found that gang members, in comparison to non-gang youth, described the groups they belong to as having recognized leaders, specific rules and codes, initiation rituals, and special clothing. Gang members were also more likely than non-gang youth to engage in violent behavior and endorse moral disengagement strategies (i.e., moral justification, euphemistic language, advantageous comparison, displacement of responsibility, attribution of blame, and dehumanization). Finally, we found that dehumanizing victims partially mediated the relationship between gang membership and violent behavior. These findings highlight the effects of groups at the individual level and an underlying psychological mechanism that explains, in part, how gang members engage in violence

    Investigation of guided wave propagation in pipes fully- and partially-embedded in concrete

    No full text
    The application of long-range guided-wave testing to pipes embedded in concrete results in unpredictable test-ranges. The influence of the circumferential extent of the embedding-concrete around a steel pipe on the guided wave propagation is investigated. An analytical model is used to study the axisymmetric fully embedded pipe case, while explicit finite-element and semi-analytical finite-element simulations are utilised to investigate a partially embedded pipe. Model predictions and simulations are compared with full-scale guided-wave tests. The transmission-loss of the T(0,1)-mode in an 8 in. steel pipe fully embedded over an axial length of 0.4 m is found to be in the range of 32–36 dB while it reduces by a factor of 5 when only 50% of the circumference is embedded. The transmission-loss in a fully embedded pipe is mainly due to attenuation in the embedded section while in a partially embedded pipe it depend strongly on the extent of mode-conversion at entry to the embedded-section; low loss modes with energy concentrated in the region of the circumference not-covered with concrete have been identified. The results show that in a fully embedded pipe, inspection beyond a short distance will not be possible, whereas when the concrete is debonded over a fraction of the pipe circumference, inspection of substantially longer lengths may be possible

    The STAFF-DWP wave instrument on the DSP equatorial spacecraft: description and first results

    Get PDF
    The STAFF-DWP wave instrument on board the equatorial spacecraft (TC1) of the Double Star Project consists of a combination of 2 instruments which are a heritage of the Cluster mission: the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment and the Digital Wave-Processing experiment (DWP). On DSP-TC1 STAFF consists of a three-axis search coil magnetometer, used to measure magnetic fluctuations at frequencies up to 4 kHz and a waveform unit, up to 10 Hz, plus snapshots up to 180 Hz. DWP provides several onboard analysis tools: a complex FFT to fully characterise electromagnetic waves in the frequency range 10 Hz-4 kHz, a particle correlator linked to the PEACE electron experiment, and compression of the STAFF waveform data. The complementary Cluster and TC1 orbits, together with the similarity of the instruments, permits new multi-point studies. The first results show the capabilities of the experiment, with examples in the different regions of the magnetosphere-solar wind system that have been encountered by DSP-TC1 at the beginning of its operational phase. An overview of the different kinds of electromagnetic waves observed on the dayside from perigee to apogee is given, including the different whistler mode waves (hiss, chorus, lion roars) and broad-band ULF emissions. The polarisation and propagation characteristics of intense waves in the vicinity of a bow shock crossing are analysed using the dedicated PRASSADCO tool, giving results compatible with previous studies: the broad-band ULF waves consist of a superimposition of different wave modes, whereas the magnetosheath lion roars are right-handed and propagate close to the magnetic field. An example of a combined Cluster DSP-TC1 magnetopause crossing is given. This first case study shows that the ULF wave power intensity is higher at low latitude (DSP) than at high latitude (Cluster). On the nightside in the tail, a first wave event comparison - in a rather quiet time interval - is shown. It opens the doors to future studies, such as event timing during substorms, to possibly determine their onset location
    • …
    corecore