479 research outputs found

    Effect of noisy channels on the transmission of mesoscopic twin-beam states

    Get PDF
    Quantum properties of light, which are crucial resources for quantum technologies, are quite fragile in nature and can be degraded and even concealed by the environment. We show, both theoretically and experimentally, that mesoscopic twin-beam states of light can preserve their nonclassicality even in the presence of major losses and different types of noise, thus suggesting their potential usefulness to encode information in quantum communication protocols. We develop a comprehensive general analytical model for a measurable nonclassicality criterion and find thresholds on noise and losses for the survival of entanglement in the twin beam

    Reliable source of conditional non-Gaussian states from single-mode thermal fields

    Full text link
    We address both theoretically and experimentally the generation of pulsed non-Gaussian states from classical Gaussian ones by means of conditional measurements. The setup relies on a beam splitter and a pair of linear photodetectors able to resolve up to tens of photons in the two outputs. We show the reliability of the setup and the good agreement with the theory for a single-mode thermal field entering the beam splitter and present a thorough characterization of the photon statistics of the conditional states.Comment: 18 pages, 12 figure

    Self-consistent characterization of light statistics

    Full text link
    We demonstrate the possibility of a self-consistent characterization of the photon-number statistics of a light field by using photoemissive detectors with internal gain simply endowed with linear input/output responses. The method can be applied to both microscopic and mesoscopic photon-number regimes. The detectors must operate in the linear range without need of photon-counting capabilities.Comment: To be published in "Journal of Modern Optics

    Special issue on basics and applications in quantum optics

    Get PDF
    Quantum technologies are advancing very rapidly and have the potential to innovate communication and computing far beyond current possibilities. Among the possible plat- forms suitable to run quantum technology protocols, in the last decades quantum optics has received a lot of attention for the handiness and versatility of optical systems. In addition to studying the fundamentals of quantum mechanics, quantum optical states have been exploited for several applications, such as quantum-state engineering, quantum communication and quantum cryptography protocols, enhanced metrology and sensing, quantum optical integrated circuits, quantum imaging, and quantum biological effects. In this Special Issue, we collect some papers and also a review on some recent research activities that show the potential of quantum optics for the advancement of quantum technologies

    Conditional measurements on multimode pairwise entangled states from spontaneous parametric downconversion

    Get PDF
    We address the intrinsic multimode nature of the quantum state of light obtained by pulsed spontaneous parametric downconversion and develop a theoretical model based only on experimentally accessible quantities. We exploit the pairwise entanglement as a resource for conditional multimode measurements and derive closed formulas for the detection probability and the density matrix of the conditional states. We present a set of experiments performed to validate our model in different conditions that are in excellent agreement with experimental data. Finally, we evaluate nonGaussianity of the conditional states obtained from our source with the aim of discussing the effects of the different experimental parameters on the efficacy of this type of conditional state preparation

    Robust generation of entanglement in Bose-Einstein condensates by collective atomic recoil

    Get PDF
    We address the dynamics induced by collective atomic recoil in a Bose-Einstein condensate in presence of radiation losses and atomic decoherence. In particular, we focus on the linear regime of the lasing mechanism, and analyze the effects of losses and decoherence on the generation of entanglement. The dynamics is that of three bosons, two atomic modes interacting with a single-mode radiation field, coupled with a bath of oscillators. The resulting three-mode dissipative Master equation is solved analytically in terms of the Wigner function. We examine in details the two complementary limits of {\em high-Q cavity} and {\em bad-cavity}, the latter corresponding to the so-called superradiant regime, both in the quasi-classical and quantum regimes. We found that three-mode entanglement as well as two-mode atom-atom and atom-radiation entanglement is generally robust against losses and decoherence,thus making the present system a good candidate for the experimental observation of entanglement in condensate systems. In particular, steady-state entanglement may be obtained both between atoms with opposite momenta and between atoms and photons

    State reconstruction by on/off measurements

    Get PDF
    We demonstrate a state reconstruction technique which provides either the Wigner function or the density matrix of a field mode and requires only avalanche photodetectors, without any phase or amplitude discrimination power. It represents an alternative, of simpler implementation, to quantum homodyne tomography.Comment: 6 pages, 4 figures, revised and enlarged versio

    Experimental joint signal-idler quasi-distributions and photon-number statistics for mesoscopic twin beams

    Get PDF
    Joint signal-idler photoelectron distributions of twin beams containing several tens of photons per mode have been measured recently. Exploiting a microscopic quantum theory for joint quasi-distributions in parametric down-conversion developed earlier we characterize properties of twin beams in terms of quasi-distributions using experimental data. Negative values as well as oscillating behaviour in quantum region are characteristic for the subsequently determined joint signal-idler quasi-distributions of integrated intensities. Also the conditional and difference photon-number distributions are shown to be sub-Poissonian and sub-shot-noise, respectively.Comment: 7 pages, 6 figure

    Orbital medial wall fractures: Purely endoscopic endonasal repair with polyethylene implants

    Get PDF
    Our technique couples the stronger support granted by non-resorbable materials and the minimal invasiveness of the endoscopic approach without the need for long-term nasal packing

    Spatial auction markets with unique consumer price

    Get PDF
    We consider a collection of auctions representing zonal electricity markets, which are joined by transmission lines in a spatial system. At each market, generating companies (traders) and customers (buyers) submit their fixed offer/bid prices together with maximal offer/bid volumes, respectively. In addition to the usual balance and capacity constraints, we consider also the additional requirement of utilizing the minimal unique purchase price for all the zones. As a result, we obtain spatial equilibrium type problems with special parameter for finding zonal prices and offer/bid volumes. We show that the streamlined formulation can be inconsistent under rather natural assumptions and propose a relaxed formulation. This problem admits suitable solution methods. We propose a parametric method combined with a bisection type procedure to solve this problem.© 2011 by Nova Science Publishers, Inc. All rights reserved
    • …
    corecore