11 research outputs found

    Two-component system response regulators involved in virulence of Streptococcus pneumoniae TIGR4 in infective endocarditis.

    Get PDF
    Streptococci resident in the oral cavity have been linked to infective endocarditis (IE). While other viridans streptococci are commonly studied in relation to IE, less research has been focused on Streptococcus pneumoniae. We established for the first time an animal model of S. pneumoniae IE, and examined the virulence of the TIGR4 strain in this model. We hypothesized that two-component systems (TCS) may mediate S. pneumoniae TIGR4 strain virulence in IE and examined TCS response regulator (RR) mutants of TIGR4 in vivo with the IE model. Thirteen of the 14 RR protein genes were mutagenized, excluding only the essential gene SP_1227. The requirement of the 13 RRs for S. pneumoniae competitiveness in the IE model was assessed in vivo through use of quantitative real-time PCR (qPCR) and competitive index assays. Using real-time PCR, several RR mutants were detected at significantly lower levels in infected heart valves compared with a control strain suggesting the respective RRs are candidate virulence factors for IE. The virulence reduction of the ΔciaR mutant was further confirmed by competitive index assay. Our data suggest that CiaR is a virulence factor of S. pneumoniae strain TIGR4 for IE

    <i>In vitro</i> growth of RR mutants.

    No full text
    <p>Growth of all 13 RR mutants with Erm-resistance cassettes, and control mutant Δsp_1678 with Erm- and Km-resistance cassettes. Bacterial cultures were individually grown at 37°C in microaerophilic conditions over the course of 10 hrs. Growth was measured by OD readings at 4 hrs and every hour thereafter on a FLUOstar plate reader at 600 nm.</p

    <i>In vivo</i> competitive index analyses of Δsp_0798.

    No full text
    <p>The CFU of both strains collected from vegetations are shown. The geometric mean CI value calculated for the Δsp_0798 mutant was 0.09. The statistical significance as determined by one-sample t test was <i>P</i><0.01.</p

    Complete genome sequence of the probiotic lactic acid bacterium \u3cem\u3eLactobacillus acidophilus\u3c/em\u3e NCFM

    Get PDF
    Lactobacillus acidophilus NCFM is a probiotic bacterium that has been produced commercially since 1972. The complete genome is 1,993,564 nt and devoid of plasmids. The average GC content is 34.71% with 1,864 predicted ORFs, of which 72.5% were functionally classified. Nine phage-related integrases were predicted, but no complete prophages were found. However, three unique regions designated as potential autonomous units (PAUs) were identified. These units resemble a unique structure and bear characteristics of both plasmids and phages. Analysis of the three PAUs revealed the presence of two R/M systems and a prophage maintenance system killer protein. A spacers interspersed direct repeat locus containing 32 nearly perfect 29-bp repeats was discovered and may provide a unique molecular signature for this organism. In silico analyses predicted 17 transposase genes and a chromosomal locus for lactacin B, a class II bacteriocin. Several mucus- and fibronectin-binding proteins, implicated in adhesion to human intestinal cells, were also identified. Gene clusters for transport of a diverse group of carbohydrates, including fructooligosaccharides and raffinose, were present and often accompanied by transcriptional regulators of the lacI family. For protein degradation and peptide utilization, the organism encoded 20 putative peptidases, homologs for PrtP and PrtM, and two complete oligopeptide transport systems. Nine two-component regulatory systems were predicted, some associated with determinants implicated in bacteriocin production and acid tolerance. Collectively, these features within the genome sequence of L. acidophilus are likely to contribute to the organisms\u27 gastric survival and promote interactions with the intestinal mucosa and microbiota

    Analysis of the Genome Sequence of Lactobacillus gasseri ATCC 33323 Reveals the Molecular Basis of an Autochthonous Intestinal Organism▿ †

    No full text
    This study presents the complete genome sequence of Lactobacillus gasseri ATCC 33323, a neotype strain of human origin and a native species found commonly in the gastrointestinal tracts of neonates and adults. The plasmid-free genome was 1,894,360 bp in size and predicted to encode 1,810 genes. The GC content was 35.3%, similar to the GC content of its closest relatives, L. johnsonii NCC 533 (34%) and L. acidophilus NCFM (34%). Two identical copies of the prophage LgaI (40,086 bp), of the Sfi11-like Siphoviridae phage family, were integrated tandomly in the chromosome. A number of unique features were identified in the genome of L. gasseri that were likely acquired by horizontal gene transfer and may contribute to the survival of this bacterium in its ecological niche. L. gasseri encodes two restriction and modification systems, which may limit bacteriophage infection. L. gasseri also encodes an operon for production of heteropolysaccharides of high complexity. A unique alternative sigma factor was present similar to that of B. caccae ATCC 43185, a bacterial species isolated from human feces. In addition, L. gasseri encoded the highest number of putative mucus-binding proteins (14) among lactobacilli sequenced to date. Selected phenotypic characteristics that were compared between ATCC 33323 and other human L. gasseri strains included carbohydrate fermentation patterns, growth and survival in bile, oxalate degradation, and adhesion to intestinal epithelial cells, in vitro. The results from this study indicated high intraspecies variability from a genome encoding traits important for survival and retention in the gastrointestinal tract

    Contribution of the novel sulfur-producing adjunct Lactobacillus nodensis to flavor development in Gouda cheese

    No full text
    peer-reviewedWe assessed the efficacy of Lactobacillus nodensis CSK964 as an adjunct culture in Gouda cheese under various industrial conditions. We set up 4 different systems: a direct vat inoculum with and without adjunct using the calf rennet Kalase, and an undefined bulk starter culture with and without adjunct using the microbial rennet Milase (both rennets from CSK Food Enrichment, Ede, the Netherlands). During ripening, we subjected the cheeses to the following analyses: viability of starter and adjunct cells, composition, proteolysis, and flavor development by detection of sulfur compounds and descriptive sensory analysis. In general, the presence of Lb. nodensis increased secondary proteolysis and influenced cheese flavor, particularly in relation to volatile sulfur compounds; hydrogen sulfide and methanethiol were present in higher abundances in cheeses containing Lb. nodensis. The primary starter also influenced the range of volatile sulfur compounds produced. Methanethiol and dimethyl disulfide were more abundant in the nisin-producing direct vat inoculum cheese with adjunct; hydrogen sulfide was more prevalent when bulk starter culture was used with Lb. nodensis. Sensory analysis revealed that the direct vat inoculum cheese with adjunct scored significantly better in terms of smell and taste than the direct vat inoculum cheese without adjunct and lacked the dominant sulfur flavors of the bulk starter cheese with adjunct. Subsequent analysis using lead acetate paper and modified motility broth as indicators of hydrogen sulfide production confirmed that Lb. nodensis produced hydrogen sulfide in broth and in the cheese matrix. This study suggests that the inclusion of Lb. nodensis as an adjunct culture can significantly alter the flavor profile of the final cheese. However, the selection of a suitable primary starter is imperative to ensure a desirable product

    Bacteriocin Production: a Probiotic Trait?

    No full text
    Bacteriocins are an abundant and diverse group of ribosomally synthesized antimicrobial peptides produced by bacteria and archaea. Traditionally, bacteriocin production has been considered an important trait in the selection of probiotic strains, but until recently, few studies have definitively demonstrated the impact of bacteriocin production on the ability of a strain to compete within complex microbial communities and/or positively influence the health of the host. Although research in this area is still in its infancy, there is intriguing evidence to suggest that bacteriocins may function in a number of ways within the gastrointestinal tract. Bacteriocins may facilitate the introduction of a producer into an established niche, directly inhibit the invasion of competing strains or pathogens, or modulate the composition of the microbiota and influence the host immune system. Here we review the role of bacteriocin production in complex microbial communities and their potential to enhance human health
    corecore