10,620 research outputs found
Documentation of the current fault detection, isolation and reconfiguration software of the AIPS fault-tolerant processor
Documentation is presented of the December 1986 version of the ADA code for the fault detection, isolation, and reconfiguration (FDIR) functions of the Advanced Information processing System (AIPS) Fault-Tolerant Processor (FTP). Because the FTP is still under development and the software is constantly undergoing changes, this should not be considered final documentation of the FDIR software of the FTP
2015 researcher's mini-symposium
Postgraduate researchers from the Faculties of Science, Engineering, Medicine & Surgery and Health Sciences gathered for a forum to present their research interests. The symposium was held in the afternoon of 30
January 2015 in the Engineering Lecture Theatre.
The symposium promoted multi-disciplinary networking between various university faculties. Participants
were invited based on research topic diversity and
gender balance.peer-reviewe
Standoff Methods for the Detection of Threat Agents: A Review of Several Promising Laser-Based Techniques
Detection of explosives, explosive precursors, or other threat agents presents a number of technological challenges for optical sensing methods. Certainly detecting trace levels of threat agents against a complex background is chief among these challenges; however, the related issues of multiple target distances (from standoff to proximity) and sampling time scales (from passive mines to rapid rate of march convoy protection) for different applications make it unlikely that a single technique will be ideal for all sensing situations. A number of methods for spanning the range of optical sensor technologies exist which, when integrated, could produce a fused sensor system possessing a high level of sensitivity to threat agents and a moderate standoff real-time capability appropriate for portal screening of personnel or vehicles. In this work, we focus on several promising, and potentially synergistic, laser-based methods for sensing threat agents. For each method, we have briefly outlined the technique and report on the current level of capability
Standoff Methods for the Detection of Threat Agents: A Review of Several Promising Laser-Based Techniques
Detection of explosives, explosive precursors, or other threat agents presents a number of technological challenges for optical sensing methods. Certainly detecting trace levels of threat agents against a complex background is chief among these challenges; however, the related issues of multiple target distances (from standoff to proximity) and sampling time scales (from passive mines to rapid rate of march convoy protection) for different applications make it unlikely that a single technique will be ideal for all sensing situations. A number of methods for spanning the range of optical sensor technologies exist which, when integrated, could produce a fused sensor system possessing a high level of sensitivity to threat agents and a moderate standoff real-time capability appropriate for portal screening of personnel or vehicles. In this work, we focus on several promising, and potentially synergistic, laser-based methods for sensing threat agents. For each method, we have briefly outlined the technique and report on the current level of capability
Contact of Single Asperities with Varying Adhesion: Comparing Continuum Mechanics to Atomistic Simulations
Atomistic simulations are used to test the equations of continuum contact
mechanics in nanometer scale contacts. Nominally spherical tips, made by
bending crystals or cutting crystalline or amorphous solids, are pressed into a
flat, elastic substrate. The normal displacement, contact radius, stress
distribution, friction and lateral stiffness are examined as a function of load
and adhesion. The atomic scale roughness present on any tip made of discrete
atoms is shown to have profound effects on the results. Contact areas, local
stresses, and the work of adhesion change by factors of two to four, and the
friction and lateral stiffness vary by orders of magnitude. The microscopic
factors responsible for these changes are discussed. The results are also used
to test methods for analyzing experimental data with continuum theory to
determine information, such as contact area, that can not be measured directly
in nanometer scale contacts. Even when the data appear to be fit by continuum
theory, extracted quantities can differ substantially from their true values
Racial differences in neurocognitive outcomes post-stroke: The impact of healthcare variables
AbstractObjectives:The present study examined differences in neurocognitive outcomes among non-Hispanic Black and White stroke survivors using the NIH Toolbox-Cognition Battery (NIHTB-CB), and investigated the roles of healthcare variables in explaining racial differences in neurocognitive outcomes post-stroke.Methods:One-hundred seventy adults (91 Black; 79 White), who participated in a multisite study were included (age:M=56.4;SD=12.6; education:M=13.7;SD=2.5; 50% male; years post-stroke: 1–18; stroke type: 72% ischemic, 28% hemorrhagic). Neurocognitive function was assessed with the NIHTB-CB, using demographically corrected norms. Participants completed measures of socio-demographic characteristics, health literacy, and healthcare use and access. Stroke severity was assessed with the Modified Rankin Scale.Results:An independent samplesttest indicated Blacks showed more neurocognitive impairment (NIHTB-CB Fluid Composite T-score:M=37.63;SD=11.67) than Whites (Fluid T-score:M=42.59,SD=11.54;p=.006). This difference remained significant after adjusting for reading level (NIHTB-CB Oral Reading), and when stratified by stroke severity. Blacks also scored lower on health literacy, reported differences in insurance type, and reported decreased confidence in the doctors treating them. Multivariable models adjusting for reading level and injury severity showed that health literacy and insurance type were statistically significant predictors of the Fluid cognitive composite (p<.001 andp=.02, respectively) and significantly mediated racial differences on neurocognitive impairment.Conclusions:We replicated prior work showing that Blacks are at increased risk for poorer neurocognitive outcomes post-stroke than Whites. Health literacy and insurance type might be important modifiable factors influencing these differences. (JINS, 2017,23, 640–652)</jats:p
Phonon-induced spin relaxation of conduction electrons in aluminum
Spin-flip Eliashberg function and temperature-dependent spin
relaxation time are calculated for aluminum using realistic
pseudopotentials. The spin-flip electron-phonon coupling constant
is found to be . The calculations agree with experiments
validating the Elliott-Yafet theory and the spin-hot-spot picture of spin
relaxation for polyvalent metals.Comment: 4 pages; submitted to PR
The First Space-Based Gravitational-Wave Detectors
Gravitational waves provide a laboratory for general relativity and a window
to energetic astrophysical phenomena invisible with electromagnetic radiation.
Several terrestrial detectors are currently under construction, and a
space-based interferometer is envisioned for launch early next century to
detect test-mass motions induced by waves of relatively short wavelength.
Very-long-wavelength gravitational waves can be detected using the plasma in
the early Universe as test masses; the motion induced in the plasma by a wave
is imprinted onto the cosmic microwave background (CMB). While the signature of
gravitational waves on the CMB temperature fluctuations is not unique, the
polarization pattern can be used to unambiguously detect gravitational
radiation. Thus, forthcoming CMB polarization experiments, such as MAP and
Planck, will be the first space-based gravitational-wave detectors.Comment: 5 pages, 3 postscript figure
- …