941 research outputs found

    Effects of Corn Bran and Degradable Protein Source on Microbial Protein Estimated From Spot Urine Samples in Heifers

    Get PDF
    A metabolism trial was conducted in finishing heifers to determine if allantoin in spot urine samples could be a predictor of microbial CP (MCP) supply. When corn bran replaced high moisture corn, ruminal pH was higher and microbial efficiency and flow were greater. Estimated microbial efficiency and flow were not different for SBM compared to urea as a source of degradable protein. Daily variation in intake was reflected in MCP estimates. Within day variation for MCP estimates was consistent and small. Estimates of MCP from allantoin in spot urine samples followed NRC estimates. Results demonstrate that allantoin is an effective predictor of MCP flow

    Effects of Corn Bran and Degradable Protein Source on Microbial Protein Estimated From Spot Urine Samples in Heifers

    Get PDF
    A metabolism trial was conducted in finishing heifers to determine if allantoin in spot urine samples could be a predictor of microbial CP (MCP) supply. When corn bran replaced high moisture corn, ruminal pH was higher and microbial efficiency and flow were greater. Estimated microbial efficiency and flow were not different for SBM compared to urea as a source of degradable protein. Daily variation in intake was reflected in MCP estimates. Within day variation for MCP estimates was consistent and small. Estimates of MCP from allantoin in spot urine samples followed NRC estimates. Results demonstrate that allantoin is an effective predictor of MCP flow

    Effects of traumatic brain injury on cognitive functioning and cerebral metabolites in HIV-infected individuals.

    Get PDF
    We explored the possible augmenting effect of traumatic brain injury (TBI) history on HIV (human immunodeficiency virus) associated neurocognitive complications. HIV-infected participants with self-reported history of definite TBI were compared to HIV patients without TBI history. Groups were equated for relevant demographic and HIV-associated characteristics. The TBI group evidenced significantly greater deficits in executive functioning and working memory. N-acetylaspartate, a putative marker of neuronal integrity, was significantly lower in the frontal gray matter and basal ganglia brain regions of the TBI group. Together, these results suggest an additional brain impact of TBI over that from HIV alone. One clinical implication is that HIV patients with TBI history may need to be monitored more closely for increased risk of HIV-associated neurocognitive disorder signs or symptoms

    A candidate gene analysis and GWAS for genes associated with maternal nondisjunction of chromosome 21

    Get PDF
    Human nondisjunction errors in oocytes are the leading cause of pregnancy loss, and for pregnancies that continue to term, the leading cause of intellectual disabilities and birth defects. For the first time, we have conducted a candidate gene and genome-wide association study to identify genes associated with maternal nondisjunction of chromosome 21 as a first step to understand predisposing factors. A total of 2,186 study participants were genotyped on the HumanOmniExpressExome-8v1-2 array. These participants included 749 live birth offspring with standard trisomy 21 and 1,437 parents. Genotypes from the parents and child were then used to identify mothers with nondisjunction errors derived in the oocyte and to establish the type of error (meiosis I or meiosis II). We performed a unique set of subgroup comparisons designed to leverage our previous work suggesting that the etiologies of meiosis I and meiosis II nondisjunction differ for trisomy 21. For the candidate gene analysis, we selected genes associated with chromosome dynamics early in meiosis and genes associated with human global recombination counts. Several candidate genes showed strong associations with maternal nondisjunction of chromosome 21, demonstrating that genetic variants associated with normal variation in meiotic processes can be risk factors for nondisjunction. The genome-wide analysis also suggested several new potentially associated loci, although follow-up studies using independent samples are required

    Early evolution of the extraordinary Nova Del 2013 (V339 Del)

    Full text link
    We determine the temporal evolution of the luminosity L(WD), radius R(WD) and effective temperature Teff of the white dwarf (WD) pseudophotosphere of V339 Del from its discovery to around day 40. Another main objective was studying the ionization structure of the ejecta. These aims were achieved by modelling the optical/near-IR spectral energy distribution (SED) using low-resolution spectroscopy (3500 - 9200 A), UBVRcIc and JHKLM photometry. During the fireball stage (Aug. 14.8 - 19.9, 2013), Teff was in the range of 6000 - 12000 K, R(WD) was expanding non-uniformly in time from around 66 to around 300 (d/3 kpc) R(Sun), and L(WD) was super-Eddington, but not constant. After the fireball stage, a large emission measure of 1.0-2.0E+62 (d/3 kpc)**2 cm**(-3) constrained the lower limit of L(WD) to be well above the super-Eddington value. The evolution of the H-alpha line and mainly the transient emergence of the Raman-scattered O VI 1032 A line suggested a biconical ionization structure of the ejecta with a disk-like H I region persisting around the WD until its total ionization, around day 40. It is evident that the nova was not evolving according to the current theoretical prediction. The unusual non-spherically symmetric ejecta of nova V339 Del and its extreme physical conditions and evolution during and after the fireball stage represent interesting new challenges for the theoretical modelling of the nova phenomenon.Comment: 14 pages, 9 figures, 3 tables, accepted for Astronomy and Astrophysic

    A major locus confers triclabendazole resistance in Fasciola hepatica and shows dominant inheritance

    Get PDF
    Fasciola hepatica infection is responsible for substantial economic losses in livestock worldwide and poses a threat to human health in endemic areas. The mainstay of control in livestock and the only drug licenced for use in humans is triclabendazole (TCBZ). TCBZ resistance has been reported on every continent and threatens effective control of fasciolosis in many parts of the world. To date, understanding the genetic mechanisms underlying TCBZ resistance has been limited to studies of candidate genes, based on assumptions of their role in drug action. Taking an alternative approach, we combined a genetic cross with whole-genome sequencing to localise a ~3.2Mbp locus within the 1.2Gbp F. hepatica genome that confers TCBZ resistance. We validated this locus independently using bulk segregant analysis of F. hepatica populations and showed that it is the target of drug selection in the field. We genotyped individual parasites and tracked segregation and reassortment of SNPs to show that TCBZ resistance exhibits Mendelian inheritance and is conferred by a dominant allele. We defined gene content within this locus to pinpoint genes involved in membrane transport, (e.g. ATP-binding cassette family B, ABCB1), transmembrane signalling and signal transduction (e.g. GTP-Ras-adenylyl cyclase and EGF-like protein), DNA/RNA binding and transcriptional regulation (e.g. SANT/Myb-like DNA-binding domain protein) and drug storage and sequestration (e.g. fatty acid binding protein, FABP) as prime candidates for conferring TCBZ resistance. This study constitutes the first experimental cross and genome-wide approach for any heritable trait in F. hepatica and is key to understanding the evolution of drug resistance in Fasciola spp. to inform deployment of efficacious anthelmintic treatments in the field

    Towards the Industrial Production of Omega-3 Long Chain Polyunsaturated Fatty Acids from a Genetically Modified Diatom Phaeodactylum tricornutum.

    Get PDF
    The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA

    Use of Remote Technology in the Surface Water Environmental Monitoring Program at SRS Reducing Measurements in the Field-13336

    Get PDF
    ABSTRACT There are a wide range of sensor and remote technology applications available for use in environmental monitoring programs. Each application has its own set of limitations and can be challenging when attempting to utilize it under diverse environmental field conditions. The Savannah River Site Environmental Monitoring Program has implemented several remote sensing and surface water flow technologies that have increased the quality of the data while reducing the number of field measurements. Implementation of this technology reduced the field time for personnel that commute across the Savannah River Site (SRS) over a span of 310 square miles. The wireless surface water flow technology allows for immediate notification of changing field conditions or equipment failure thus reducing data-loss or erroneous field data and improving data-quality. This wireless flow technology uses the stage-to-flow methodology coupled with implementation of a robust highly accurate Acoustic Doppler Profiler system for measuring discharge under various field conditions. Savings for implementation of the wireless flow application and Flowlink® technology equates to approximately 1175 hours annually for the radiological liquid effluent and surveillance programs
    corecore