7,662 research outputs found
A forensic geoscience framework and practice
Appropriate and correct collection, analysis, interpretation, and presentation of geoforensic evidence are contingent upon understanding the specific context of the particular forensic investigation undertaken. To achieve this, the role of experimental studies in forensic geoscience must not be underestimated. In this article, we present two experimental studies that assess the spatial distribution of pollen in a living room and the nature of subsequent transfer of pollen onto clothing. The presence of cut flowers in a living room are shown to lead to a distribution of pollen grains onto all types of surface in that room that exhibits a distance–decay pattern with the greatest numbers of grains found in close proximity to the flowers. Once the transfer of pollen grains from a source location onto clothing has taken place, our second study demonstrates the nature of the persistence of that evidence for dry and damp clothing under active and inactive conditions. The level of activity after transfer is shown to have far more influence upon the persistence of this form of geoforensic evidence in comparison to the damp or dry conditions of the garment. We argue that these findings have implications for all stages of the forensic investigation–from sampling protocols to the interpretation of the presence/absence of geoforensic evidence. Whilst every contact does indeed leave a trace, it is imperative that there is an appreciation of the context of each forensic investigation, meaningful science take place and accurate and helpful crime reconstructions to be achieved
Comparison of Different Boost Transformations for the Calculation of Form Factors in Relativistic Quantum Mechanics
The effect of different boost expressions, pertinent to the instant, front
and point forms of relativistic quantum mechanics, is considered for the
calculation of the ground-state form factor of a two-body system in simple
scalar models. Results with a Galilean boost as well as an explicitly covariant
calculation based on the Bethe-Salpeter approach are given for comparison. It
is found that the present so-called point-form calculations of form factors
strongly deviate from all the other ones. This suggests that the formalism
which underlies them requires further elaboration. A proposition in this sense
is made.Comment: Invited talk given at the 18th European Conference on Few-Body
Problems in Physics, Bled, Slovenia, 8-14 Sep 2002. Submitted to Few Body
Syst.Supp
Erratum: A decadal decline in relative abundance and a shift in microphytoplankton composition at a long-term coastal station off southeast Australia
In this study, we examined 11 yr (1998-2009) of water samples collected from Port Hacking coastal monitoring station 8 km offshore from Sydney, Australia, to assess changes in the microphytoplankton in relation to climate-related trends in environmental variables. A total of 152 taxa (85 genera) were identified, with the small diatom Thalassiosira cf. partheneia and the tropical cyanobacterium Trichodesmium erythraeum being the dominant species over the past decade. Taxon richness showed a distinct seasonal pattern, peaking in the austral winter. Ordination analyses revealed significant seasonal and interannual trends in species composition, including a decadal decline in dinoflagellates relative to diatoms toward the present. This decadal shift in taxonomic composition was, in turn, significantly associated with declines in water temperatures over this time period. Total abundance varied by 12 orders of magnitude (8.5 X 10⁻⁸ to 7.4 X 10⁴ cells L⁻¹), with values separable into bloom and nonbloom regimes at an abundance threshold of 7.1 X 10⁻⁵ cells L⁻¹. Significant temporal declines in abundance were observed during both bloom and nonbloom regimes. Blooms occurred most consistently in March, September, and December.13 page(s
HLA Class-II Associated HIV Polymorphisms Predict Escape from CD4+ T Cell Responses.
Antiretroviral therapy, antibody and CD8+ T cell-mediated responses targeting human immunodeficiency virus-1 (HIV-1) exert selection pressure on the virus necessitating escape; however, the ability of CD4+ T cells to exert selective pressure remains unclear. Using a computational approach on HIV gag/pol/nef sequences and HLA-II allelic data, we identified 29 HLA-II associated HIV sequence polymorphisms or adaptations (HLA-AP) in an African cohort of chronically HIV-infected individuals. Epitopes encompassing the predicted adaptation (AE) or its non-adapted (NAE) version were evaluated for immunogenicity. Using a CD8-depleted IFN-γ ELISpot assay, we determined that the magnitude of CD4+ T cell responses to the predicted epitopes in controllers was higher compared to non-controllers (p<0.0001). However, regardless of the group, the magnitude of responses to AE was lower as compared to NAE (p<0.0001). CD4+ T cell responses in patients with acute HIV infection (AHI) demonstrated poor immunogenicity towards AE as compared to NAE encoded by their transmitted founder virus. Longitudinal data in AHI off antiretroviral therapy demonstrated sequence changes that were biologically confirmed to represent CD4+ escape mutations. These data demonstrate an innovative application of HLA-associated polymorphisms to identify biologically relevant CD4+ epitopes and suggests CD4+ T cells are active participants in driving HIV evolution
Climatic Disequilibrium Threatens Conservation Priority Forests
AcceptedArticle in PressThis is the final version of the article. Available from Wiley Open Access via the DOI in this record.© 2017 Wiley Periodicals, Inc.We test the hypothesis that climatic changes since 1800 have resulted in unrealized potential vegetation changes that represent a "climatic debt" for many ecosystems. Caledonian pinewoods, an EU priority forest type, are used as a model system to explore potential impacts of two centuries of climatic change upon sites of conservation importance and surrounding landscapes. Using methods that estimate topographic microclimate, current and preindustrial climates were estimated for 50 m grid cells and simulations made using a dynamic vegetation model. Core Caledonian pinewood areas are now less suitable for growth of pine and more favorable for oak than in 1800, whereas landscapes as a whole are on average more favorable for both. The most favorable areas for pine are now mainly outside areas designated to conserve historical pinewoods. A paradigm shift is needed in formulating conservation strategies to avoid catastrophic losses of this habitat, and of many others globally with trees or other long-lived perennials as keystone species.Natural Environment Research Council. Grant Number: NE/I011234/
A dusty pinwheel nebula around the massive star WR 104
Wolf-Rayet (WR) stars are luminous massive blue stars thought to be immediate
precursors to the supernova terminating their brief lives. The existence of
dust shells around such stars has been enigmatic since their discovery some 30
years ago; the intense radiation field from the star should be inimical to dust
survival. Although dust-creation models, including those involving interacting
stellar winds from a companion star, have been put forward, high-resolution
observations are required to understand this phenomena. Here we present
resolved images of the dust outflow around Wolf-Rayet WR 104, obtained with
novel imaging techniques, revealing detail on scales corresponding to about 40
AU at the star. Our maps show that the dust forms a spatially confined stream
following precisely a linear (or Archimedian) spiral trajectory. Images taken
at two separate epochs show a clear rotation with a period of 220 +/- 30 days.
Taken together, these findings prove that a binary star is responsible for the
creation of the circumstellar dust, while the spiral plume makes WR 104 the
prototype of a new class of circumstellar nebulae unique to interacting wind
systems.Comment: 7 pages, 2 figures, Appearing in Nature (1999 April 08
Recommended from our members
Measuring venous oxygenation using the photoplethysmograph waveform
OBJECTIVE: We investigate the hypothesis that the photoplethysmograph (PPG) waveform can be analyzed to infer regional venous oxygen saturation.
METHODS: Fundamental to the successful isolation of the venous saturation is the identification of PPG characteristics that are unique to the peripheral venous system. Two such characteristics have been identified. First, the peripheral venous waveform tends to reflect atrial contraction. Second, ventilation tends to move venous blood preferentially due to the low pressure and high compliance of the venous system. Red (660 nm) and IR (940 nm) PPG waveforms were collected from 10 cardiac surgery patients using an esophageal PPG probe. These waveforms were analyzed using algorithms written in Mathematica. Four time-domain saturation algorithms (ArtSat, VenSat, ArtInstSat, VenInstSat) and four frequency-domain saturation algorithms (RespDC, RespAC, Cardiac, and Harmonic) were applied to the data set.
RESULTS: Three of the algorithms for calculating venous saturation (VenSat, VenInstSat, and RespDC) demonstrate significant difference from ArtSat (the conventional time-domain algorithm for measuring arterial saturation) using the Wilcoxon signed-rank test with Bonferroni correction (p < 0.0071).
CONCLUSIONS: This work introduces new algorithms for PPG analysis. Three algorithms (VenSat, VenInstSat, and RespDC) succeed in detecting lower saturation blood. The next step is to confirm the accuracy of the measurement by comparing them to a gold standard (i.e., venous blood gas)
Recommended from our members
Detecting sulphate aerosol geoengineering with different methods
Sulphate aerosol injection has been widely discussed as a possible way to engineer future climate. Monitoring it would require detecting its effects amidst internal variability and in the presence of other external forcings. We investigate how the use of different detection methods and filtering techniques affects the detectability of sulphate aerosol geoengineering in annual-mean global-mean near-surface air temperature. This is done by assuming a future scenario that injects 5 Tg yr−1 of sulphur dioxide into the stratosphere and cross-comparing simulations from 5 climate models. 64% of the studied comparisons would require 25 years or more for detection when no filter and the multi-variate method that has been extensively used for attributing climate change are used, while 66% of the same comparisons would require fewer than 10 years for detection using a trend-based filter. This highlights the high sensitivity of sulphate aerosol geoengineering detectability to the choice of filter. With the same trend-based filter but a non-stationary method, 80% of the comparisons would require fewer than 10 years for detection. This does not imply sulphate aerosol geoengineering should be deployed, but suggests that both detection methods could be used for monitoring geoengineering in global, annual mean temperature should it be needed
A four-helix bundle stores copper for methane oxidation
Methane-oxidising bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase (pMMO). Certain methanotrophs are also able to switch to using the iron-containing soluble MMO (sMMO) to catalyse methane oxidation, with this switchover regulated by copper. MMOs are Nature’s primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and MMOs have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. We have discovered and characterised a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for pMMO. Csp1 is a tetramer of 4-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realised. Cytosolic homologues of Csp1 are present in diverse bacteria thus challenging the dogma that such organisms do not use copper in this location
- …
