1,309 research outputs found

    AlH3 between 65-110 GPa: implications of electronic band and phonon structures

    Full text link
    A first-principles density-functional-theory method has been used to reinvestigate the mechanical and dynamical stability of the metallic phase of AlH3 between 65-110 GPa. The electronic properties and phonon dynamics as a function of pressure are also explored. We find electron-phonon superconductivity in the cubic Pm-3n structure with critical temperature Tc = 37 K at 70 GPa which decreases rapidly with the increase of pressure. Further unlike a previously calculated Tc value of 24 K at 110 GPa, we do not find any superconductivity of significance at this pressure which is consistent with experimental observation.Comment: 6 pages, 4 figures Keywords: AlH3, Electronic structure, Phonon dynamics, Superconductivity PACS number(s): 62.50.-p, 63.20.kd, 74.10.+v, 74.20.P

    Phonons and specific heat of linear dense phases of atoms physisorbed in the grooves of carbon nanotube bundles

    Full text link
    The vibrational properties (phonons) of a one-dimensional periodic phase of atoms physisorbed in the external groove of the carbon nanotube bundle are studied. Analytical expressions for the phonon dispersion relations are derived. The derived expressions are applied to Xe, Kr and Ar adsorbates. The specific heat pertaining to dense phases of these adsorbates is calculated.Comment: 4 PS figure

    Vibrations of a chain of Xe atoms in a groove of carbon nanotube bundle

    Full text link
    We present a lattice dynamics study of the vibrations of a linear chain of Xe adsorbates in groove positions of a bundle of carbon nanotubes. The characteristic phonon frequencies are calculated and the adsorbate polarization vectors discussed. Comparison of the present results with the ones previously published shows that the adsorbate vibrations cannot be treated as completely decoupled from the vibrations of carbon nanotubes and that a significant hybridization between the adsorbate and the tube modes occurs for phonons of large wavelengths.Comment: 3 PS figure

    Adopting a blended approach to learning: experiences from radiography at Queen Margaret University, Edinburgh

    Get PDF
    The perspective of the radiography teaching team at Queen Margaret University (QMU) was that a transmission mode of programme delivery was sub-optimal in helping students to learn and make links between theory and practice. Programme redesign adopted a blended learning approach with both face-to-face and online learning aimed at enhancing the students’ control over their own learning. Online tasks within Web Classroom Tools (WebCT) were used as an integral part of careful programme design, which resulted in a programme enabling synthesis of the skills, knowledge and competencies acquired in the academic and clinical environments. With the move towards a more learner-centred, blended educational experience for the students the lecturers’ role shifted to that of facilitator with WebCT providing the tutor with a more transparent view of student learning. Lecturers plan learning activities that build upon the skills students have developed through learning in groups, online and in class. The explicit connections that now exist between the academic programme and the opportunities for applying knowledge in practice allow students to engage more deeply in their learning

    Transcriptomic analysis of human astrocytes in vitro reveals hypoxia-induced mitochondrial dysfunction, modulation of metabolism, and dysregulation of the immune response

    Get PDF
    Hypoxia is a feature of neurodegenerative diseases, and can both directly and indirectly impact on neuronal function through modulation of glial function. Astrocytes play a key role in regulating homeostasis within the central nervous system, and mediate hypoxia-induced changes in response to reduced oxygen availability. The current study performed a detailed characterization of hypoxia-induced changes in the transcriptomic profile of astrocytes in vitro. Human astrocytes were cultured under normoxic (5% CO2, 95% air) or hypoxic conditions (1% O2, 5% CO2, 94% N2) for 24 h, and the gene expression profile assessed by microarray analysis. In response to hypoxia 4904 genes were significantly differentially expressed (1306 upregulated and 3598 downregulated, FC ≥ 2 and p ≤ 0.05). Analysis of the significant differentially expressed transcripts identified an increase in immune response pathways, and dysregulation of signalling pathways, including HIF-1 (p = 0.002), and metabolism, including glycolysis (p = 0.006). To assess whether the hypoxia-induced metabolic gene changes observed affected metabolism at a functional level, both the glycolytic and mitochondrial flux were measured using an XF bioanalyser. In support of the transcriptomic data, under physiological conditions hypoxia significantly reduced mitochondrial respiratory flux (p = 0.0001) but increased basal glycolytic flux (p = 0.0313). However, when metabolically stressed, hypoxia reduced mitochondrial spare respiratory capacity (p = 0.0485) and both glycolytic capacity (p = 0.0001) and glycolytic reserve (p < 0.0001). In summary, the current findings detail hypoxia-induced changes in the astrocyte transcriptome in vitro, identifying potential targets for modifying the astrocyte response to reduced oxygen availability in pathological conditions associated with ischaemia/hypoxia, including manipulation of mitochondrial function, metabolism, and the immune response

    Nitrogen and Iron Availability Drive Metabolic Remodeling and Natural Selection of Diverse Phytoplankton during Experimental Upwelling

    Get PDF
    Nearly half of carbon fixation and primary production originates from marine phytoplankton, and much of it occurs in episodic blooms in upwelling regimes. Here, we simulated blooms limited by nitrogen and iron by incubating Monterey Bay surface waters with subnutricline waters and inorganic nutrients and measured the wholecommunity transcriptomic response during mid- and late-bloom conditions. Cell counts revealed that centric and pennate diatoms (largely Pseudo-nitzschia and Chaetoceros spp.) were the major blooming taxa, but dinoflagellates, prasinophytes, and prymnesiophytes also increased. Viral mRNA significantly increased in late bloom and likely played a role in the bloom\u27s demise. We observed conserved shifts in the genetic similarity of phytoplankton populations to cultivated strains, indicating adaptive population-level changes in community composition. Additionally, the density of single nucleotide variants (SNVs) declined in late-bloom samples for most taxa, indicating a loss of intraspecific diversity as a result of competition and a selective sweep of adaptive alleles. We noted differences between mid- and late-bloom metabolism and differential regulation of light-harvesting complexes (LHCs) under nutrient stress. While most LHCs are diminished under nutrient stress, we showed that diverse taxa upregulated specialized, energy-dissipating LHCs in low iron. We also suggest the relative expression of NRT2 compared to the expression of GSII as a marker of cellular nitrogen status and the relative expression of iron starvationinduced protein genes (ISIP1, ISIP2, and ISIP3) compared to the expression of the thiamine biosynthesis gene (thiC) as a marker of iron status in natural diatom communities

    Wildfires in eastern Texas in August and September 2000: Emissions, aircraft measurements, and impact on photochemistry

    Get PDF
    The accuracy of wildfire air pollutant emission estimates was assessed by comparing observations of carbon monoxide (CO) and particulate matter (PM) concentrations in wildfire plumes to predictions of CO and PM concentrations, based on emission estimates and air quality models. The comparisons were done for observations made in southeast Texas in August and September of 2000. The fire emissions were estimated from acreage burned, fuel loading information, and fuel emission factor models. A total of 389 km2 (96,100 acres) burned in wildfires in the domain encompassing the Houston/Galveston-Beaumont/ Port Arthur (HGBPA) area during August and September 2000. On the days of highest wildfire activity, the fires resulted in an estimated 3700 tons of CO emissions, 250 tons of volatile organic carbon (VOC) emissions, 340 tons of PM2.5, and 50 tons of NOx emissions; estimated CO and VOC emissions from the fires exceeded light duty gasoline vehicle emissions in the Houston area on those days. When the appropriate aircraft data were available, aloft measurements of CO in the fire plumes were compared to concentrations of CO predicted using the emission estimates. Concentrations estimated based on emission predictions and air quality models were within a factor of 2 of the observed values. The estimated emissions from fires were used, together with a gridded photochemical model, to characterize the extent of dispersion of the fire emissions and the photochemistry associated with the fire emissions. Although the dispersion and photochemical impacts varied from fire to fire, for wildfires less than 10,000 acres, the greatest enhancements of CO and ozone concentrations due to the fire emissions were generally confined to regions within 10-100 km of the fire. Within 10 km of these fires, CO concentrations can exceed 2 ppm and ozone concentrations can be enhanced by 60 ppb. The extent of photo-oxidant formation in the plumes was limited by NOx availability and isoprene emissions from forested areas downwind of the fires provided most of the hydrocarbon reactivity in the plumes
    • …
    corecore