3,149 research outputs found

    The effect of extreme response and non-extreme response styles on testing measurement invariance

    Get PDF
    Extreme and non-extreme response styles (RSs) are prevalent in survey research using Likert-type scales. Their effects on measurement invariance (MI) in the context of confirmatory factor analysis are systematically investigated here via a Monte Carlo simulation study. Using the parameter estimates obtained from analyzing a 2007 Trends in International Mathematics and Science Study data set, a population model was constructed. Original and contaminated data with one of two RSs were generated and analyzed via multi-group confirmatory factor analysis with different constraints of MI. The results indicated that the detrimental effects of response style on MI have been underestimated. More specifically, these two RSs had a substantially negative impact on both model fit and parameter recovery, suggesting that the lack of MI between groups may have been caused by the RSs, not the measured factors of focal interest. Practical implications are provided to help practitioners to detect RSs and determine whether RSs are a serious threat to MI

    Evaluating the transferability of coarse-grained, density-dependent implicit solvent models to mixtures and chains

    Get PDF
    Previously, we described a coarse-graining method for creating local density-dependent implicit solvent (DDIS) potentials that reproduce the radial distribution function (RDF) and solute excess chemical potential across a range of particle concentrations [ E. C. Allen and G. C. Rutledge, J. Chem. Phys. 128, 154115 (2008) ]. In this work, we test the transferability of these potentials, derived from simulations of monomeric solute in monomeric solvent, to mixtures of solutes and to solute chains in the same monomeric solvent. For this purpose, “transferability” refers to the predictive capability of the potentials without additional optimization. We find that RDF transferability to mixtures is very good, while RDF errors in systems of chains increase linearly with chain length. Excess chemical potential transferability is good for mixtures at low solute concentration, chains, and chains of mixed composition; at higher solute concentrations in mixtures, chemical potential transferability fails due to the nature of the DDIS potentials, in which particle insertion directly affects the interaction potential. With these results, we demonstrate that DDIS potentials derived for pure solutes can be used effectively in the study of many important systems including those involving mixtures, chains, and chains of mixed composition in monomeric solvent.United States. Dept. of Energy (Computational Sciences Graduate Fellowship

    Simulation and Characterization of a Miniaturized Scanning Electron Microscope

    Get PDF
    A miniaturized Scanning Electron Microscope (mSEM) for in-situ lunar investigations is being developed at NASA Marshall Space Flight Center with colleagues from the University of Alabama in Huntsville (UAH), Advanced Research Systems (ARS), the University of Tennessee in Knoxville (UTK) and Case Western Reserve University (CWRU). This effort focuses on the characterization of individual components of the mSEM and simulation of the complete system. SEMs can provide information on the size, shape, morphology and chemical composition of lunar regolith. Understanding these basic properties will allow us to better estimate the challenges associated with In-Situ Resource Utilization and to improve our basic science knowledge of the lunar surface (either precluding the need for sample return or allowing differentiation of unique samples to be returned to Earth.) The main components of the mSEM prototype includes: a cold field emission electron gun (CFEG), focusing lens, deflection/scanning system and backscatter electron detector. Of these, the electron gun development is of particular importance as it dictates much of the design of the remaining components. A CFEG was chosen for use with the lunar mSEM as its emission does not depend on heating of the tungsten emitter (lower power), it offers a long operation lifetime, is orders of magnitude brighter than tungsten hairpin guns, has a small source size and exhibits low beam energy spread

    Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia.

    Get PDF
    BackgroundEndophenotypes are quantitative, laboratory-based measures representing intermediate links in the pathways between genetic variation and the clinical expression of a disorder. Ideal endophenotypes exhibit deficits in patients, are stable over time and across shifts in psychopathology, and are suitable for repeat testing. Unfortunately, many leading candidate endophenotypes in schizophrenia have not been fully characterized simultaneously in large cohorts of patients and controls across these properties. The objectives of this study were to characterize the extent to which widely-used neurophysiological and neurocognitive endophenotypes are: 1) associated with schizophrenia, 2) stable over time, independent of state-related changes, and 3) free of potential practice/maturation or differential attrition effects in schizophrenia patients (SZ) and nonpsychiatric comparison subjects (NCS). Stability of clinical and functional measures was also assessed.MethodsParticipants (SZ n = 341; NCS n = 205) completed a battery of neurophysiological (MMN, P3a, P50 and N100 indices, PPI, startle habituation, antisaccade), neurocognitive (WRAT-3 Reading, LNS-forward, LNS-reorder, WCST-64, CVLT-II). In addition, patients were rated on clinical symptom severity as well as functional capacity and status measures (GAF, UPSA, SOF). 223 subjects (SZ n = 163; NCS n = 58) returned for retesting after 1 year.ResultsMost neurophysiological and neurocognitive measures exhibited medium-to-large deficits in schizophrenia, moderate-to-substantial stability across the retest interval, and were independent of fluctuations in clinical status. Clinical symptoms and functional measures also exhibited substantial stability. A Longitudinal Endophenotype Ranking System (LERS) was created to rank neurophysiological and neurocognitive biomarkers according to their effect sizes across endophenotype criteria.ConclusionsThe majority of neurophysiological and neurocognitive measures exhibited deficits in patients, stability over a 1-year interval and did not demonstrate practice or time effects supporting their use as endophenotypes in neural substrate and genomic studies. These measures hold promise for informing the "gene-to-phene gap" in schizophrenia research

    The psychological wellbeing outcomes of nonpharmacological interventions for older persons with insomnia symptoms: a systematic review and meta-analysis

    Get PDF
    Nonpharmacological treatment of insomnia in older persons has been associated with reduced insomnia symptoms and increased psychological wellbeing. This systematic review and meta-analysis examined whether nonpharmacological interventions can promote wellbeing indicators in older persons who experience insomnia symptoms and investigated the components of these interventions. Twenty studies met inclusion criteria. Psychological wellbeing outcomes included symptoms of depression, anxiety, mental health-related quality of life, and fatigue. Interventions significantly reduced depression and fatigue symptoms in most of the studies that included these outcomes. Findings of our qualitative analysis suggest that mindfulness-based interventions in particularcan potentially reduce depression symptoms in older persons with insomnia symptoms. Meta-analyses of studies that included psychological wellbeing outcomes showed small-medium weighted mean effects indicating reductions in symptoms of depression, anxiety, and fatigue. The results suggest that nonpharmacological interventions for older persons with insomnia symptoms can potentially reduce depression and fatigue symptoms and highlight interventions that may be particularly valuable for this purpose

    Nanomechanical testing of freestanding polymer thin films

    Get PDF
    A new approach for tensile testing of freestanding polymer thin films has been developed to investigate nanomechanical phenomena with precise control of strain rate, environmental and in situ TEM imaging capabilities. Several techniques for mechanical testing of polymer thin films have been reported previously, but there is a lack of consensus regarding size-dependent mechanical properties1–3. The technique described here is derived from a nanomechanical tensile testing platform known as at Push-to-Pull (PTP) device (Figure 1) using a novel sample preparation approach. A free-standing specimen is placed across the tensile actuation gap of the PTP device such that it can be mounted at the end of a specialized TEM holder for quantitative in situ tensile testing or to a specialized mount was designed to enable PTP experiments to be performed using a stand-alone nanoindenter. With this adaptation, all of the capabilities of ex situ nanoindentation are accessible to PTP tensile testing; which includes environmental control (temperature and humidity), DMA, and a wide range of strain rates. Polystyrene was chosen as a model system for direct comparison with alternative testing techniques. While polystyrene is traditionally thought of as a brittle polymer at room temperature, our initial testing of thin sections has revealed extreme ductility (Figure 1). Ductility in polystyrene thin films has been previously reported in literature1–3, but only to elongations of less than 7% before fracture. Initial results using the PTP device have shown extreme ductility in polystyrene, with strains exceeding 100% without fracture. Our results appear to be independent of strain rate in the range tested; unlike the yield stress, which shows a strong strain-rate dependence. The origin of this nanomechanical pheno Please click Additional Files below to see the full abstract

    Vortices and extreme black holes: the question of flux expulsion

    Get PDF
    It has been claimed that extreme black holes exhibit a phenomenon of flux expulsion for abelian Higgs vortices, irrespective of the relative width of the vortex to the black hole. Recent work by two of the authors showed a subtlety in the treatment of the event horizon, which cast doubt on this claim. We analyse in detail the vortex/extreme black hole system, showing that while flux expulsion can occur, it does not do so in all cases. We give analytic proofs for both expulsion and penetration of flux, in each case deriving a bound for that behaviour. We also present extensive numerical work backing up, and refining, these claims, and showing in detail how a vortex can end on a black hole in all situations. We also calculate the backreaction of the vortex on the geometry, and comment on the more general vortex-black hole system.Comment: 28 pages revtex, 10 figures, minor changes, reference adde
    corecore