2,666 research outputs found

    Wind-induced drift of objects at sea: the leeway field method

    Get PDF
    A method for conducting leeway field experiments to establish the drift properties of small objects (0.1-25 m) is described. The objective is to define a standardized and unambiguous procedure for condensing the drift properties down to a set of coefficients that may be incorporated into existing stochastic trajectory forecast models for drifting objects of concern to search and rescue operations and other activities involving vessels lost at sea such as containers with hazardous material. An operational definition of the slip or wind and wave-induced motion of a drifting object relative to the ambient current is proposed. This definition taken together with a strict adherence to 10 m wind speed allows us to refer unambiguously to the leeway of a drifting object. We recommend that all objects if possible be studied using what we term the direct method, where the object's leeway is studied directly using an attached current meter. We divide drifting objects into four categories, depending on their size. For the smaller objects (less than 0.5 m), an indirect method of measuring the object's motion relative to the ambient current must be used. For larger objects, direct measurement of the motion through the near-surface water masses is strongly recommended. Larger objects are categorized according to the ability to attach current meters and wind monitoring systems to them. The leeway field method proposed here is illustrated with results from field work where three objects were studied in their distress configuration; a 1:3.3 sized model of a 40-ft Shipping container, a World War II mine and a 220 l (55-gallon) oil drum.Comment: 33 pages, 12 figures, 3 table

    The class of 1961--changing attitudes and values

    Get PDF
    Thesis (B.S.)--Massachusetts Institute of Technology, School of Industrial Management, 1961.MIT copy bound with: A study of correlation between media which influence consumers and personal characteristics of the consumer / by Leonard Irving Hess [1961]Includes bibliographical references.by Arthur A. Katz.B.S

    A nonparametric urn-based approach to interacting failing systems with an application to credit risk modeling

    Full text link
    In this paper we propose a new nonparametric approach to interacting failing systems (FS), that is systems whose probability of failure is not negligible in a fixed time horizon, a typical example being firms and financial bonds. The main purpose when studying a FS is to calculate the probability of default and the distribution of the number of failures that may occur during the observation period. A model used to study a failing system is defined default model. In particular, we present a general recursive model constructed by the means of inter- acting urns. After introducing the theoretical model and its properties we show a first application to credit risk modeling, showing how to assess the idiosyncratic probability of default of an obligor and the joint probability of failure of a set of obligors in a portfolio of risks, that are divided into reliability classes

    The Leeway of Shipping Containers at Different Immersion Levels

    Full text link
    The leeway of 20-foot containers in typical distress conditions is established through field experiments in a Norwegian fjord and in open-ocean conditions off the coast of France with wind speed ranging from calm to 14 m/s. The experimental setup is described in detail and certain recommendations given for experiments on objects of this size. The results are compared with the leeway of a scaled-down container before the full set of measured leeway characteristics are compared with a semi-analytical model of immersed containers. Our results are broadly consistent with the semi-analytical model, but the model is found to be sensitive to choice of drag coefficient and makes no estimate of the cross-wind leeway of containers. We extend the results from the semi-analytical immersion model by extrapolating the observed leeway divergence and estimates of the experimental uncertainty to various realistic immersion levels. The sensitivity of these leeway estimates at different immersion levels are tested using a stochastic trajectory model. Search areas are found to be sensitive to the exact immersion levels, the choice of drag coefficient and somewhat less sensitive to the inclusion of leeway divergence. We further compare the search areas thus found with a range of trajectories estimated using the semi-analytical model with only perturbations to the immersion level. We find that the search areas calculated without estimates of crosswind leeway and its uncertainty will grossly underestimate the rate of expansion of the search areas. We recommend that stochastic trajectory models of container drift should account for these uncertainties by generating search areas for different immersion levels and with the uncertainties in crosswind and downwind leeway reported from our field experiments.Comment: 25 pages, 11 figures and 5 tables; Ocean Dynamics, Special Issue on Advances in Search and Rescue at Sea (2012
    • …
    corecore