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Abstract 
 
 A three dimensional orthotropic elastic constitutive model with continuum damage is 
implemented for polymer matrix composite lamina.  Damage evolves based on a quadratic 
homogeneous function of thermodynamic forces in the orthotropic planes.  A small strain 
formulation is used to assess damage.  In order to account for large deformations, a Kirchhoff 
material formulation is implemented and coded for numerical simulation in Sandia’s Sierra 
Finite Element code suite.  The theoretical formulation is described in detail.  An example of 
material parameter determination is given and an example is presented. 
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1.  MODEL FORMULATION 
 
 The material model outlined in this report follows very closely to ones presented in [1-4].  
Slight modifications and deviations are made to simplify, correct or modify according to the 
user’s needs. 
 Thermodynamically based continuum damage mechanics (CDM) is used for a simple 
phenomenological fiber-reinforced polymer matrix composite damage evolution material model.  
Plastic strain evolution can typically be ignored for primarily in-plane tensile loading [5].  
Therefore, due to the lack of shear data and expectation of loading condition, plastic strain 
evolution will be addressed in a later version.  Additionally, the damage surface and related 
failure criteria based on the thermodynamic force conjugate to damage is implemented in terms 
of the quadratic homogeneous function [6].  This approximation of the damage/failure criteria is 
shown to be accurate for some composite materials; however, investigation into other 
formulations is reserved for a subsequent investigation. 
  
1.1. Thermodynamics 
 

The material response is modeled by relating the Green-Lagrange strain (E) to the second 
Piola-Kirchhoff stress (S).  This is called a Saint-Venant-Kirchhoff (Kirchhoff) material and is 
valid for small strains and large rotations [7]. 
 

 
The local Clausius-Duhem inequality ensuring a positive internal entropy production is written in 
terms of the Helmholtz free energy ( ) 
 

 
where   is density,   is entropy, and   is the heat flux.  The Helmholtz free energy is a function 
of elastic strain, temperature, damage and internal state variables ( (       )).  Applying the 
chain rule, 1.2 becomes 
 

 
where the tensor D and the scalar   are internal state variables associated with damage.  The 
Helmholtz free energy density ψ is assumed to be the sum of the strain energy density φ and a 
dissipation term π 
 
  (           )   (         )   ( ) (1.4) 
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The hardening function is given by the Prony series 
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where αi and βi are material parameters determined by curve fits of experimental data. 
 
1.2. Damage 
 

For many composite materials, damage occurs only on principal material planes.  
Therefore, the damage parameters can be limited to those affecting the normal and transverse 
principal material directions.  The second order damage tensor Dij is defined as 
 

 
For unidirectional composites, coupling of shear and normal damage is a result of micro-cracks, 
fiber breaks and fiber-matrix deboning as in the above formulation.  However, some materials 
may not experience a linear coupling between normal and shear damage.  For example, plane 
weave composites under shear experience stiffness reduction due to matrix cracking and fiber-
matrix deboning with little to no fiber breakage resulting in only a minor reduction of stiffness in 
the fiber directions.  The following definition of the damage effects tensor is used [8]: 
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and the c constants represent the crack closure coefficients.  Thus, Ω represents the actual 
integrity in load directions and damage uniquely represents only tensile stiffness reduction in the 
normal direction or the ratio of crack area to total area. 
 
Based on the principle of energy equivalence, the damaged stiffness tensor Cijkl is related to the 
undamaged stiffness as 

 
The damaged (actual) stresses and strains are 
 
              (1.18) 
 
          

      (1.19) 
 
and the effective (local) stresses and elastic strains are 
 
  ̅     ̅     ̅  (1.20) 
 
   ̅    ̅   
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Thus, the damaged and effective configurations are related by 
 
           ̅   (1.22) 
 
          

    ̅  (1.23) 
 
The explicit form of nominal thermodynamic force Yij is expanded in terms of effective strain in 
contracted form for tensile loading as 
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and compressive loading 
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or any combination of the two. 
 
The damage surface g is assumed to have the form of a quadratic homogeneous function:  
 
   (           )

  ⁄
 ( ( )    ) (1.26) 

 
where γo is the initial damage threshold and Jijkl is a positive definite fourth order tensor 
dependent upon strength parameters.  Figure 1 shows an example of the damage surface in 2D 
stress space.  An associated model, where the damage surface and damage potential are equal (g 
=  f), is used. 
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Figure 1.  Damage surface in 2D stress space (        

      ). 
 

For the analysis presented in Barbero’s book [1], g is given as a sum of the normal and 
shear components of the damage surface.  At this time, this formulation is shown to be incorrect 
based on the evolution functions and the resulting tangent constitutive tensor because an explicit 
function for the separation does not exist and therefore not differentiable.  Additionally, Barbero 
and De Vivo [2] implement an absolute value term in the damage surface that is linear with 
stress.  The intermediate constants are not consistently solvable because the thermodynamic 
forces are independent of the sign of stress for the uniaxial cases.  Therefore, this formulation is 
only applicable for very precise damage parameter combinations.  The formulation presented 
above presents the same issue that the intermediate parameters are only functions of the tensile 
strength data.  Thus, differences in compression and shear are accounted for by the integrity 
tensor definitions and the crack closure coefficients.  Furthermore, even if a linear term is 
included in the damage surface definition, the Tsai-Wu criteria is not necessarily equivalent 
when γ + γo = 1. 
 
1.2. Evolution Equations 
 

The evolution of the internal variables can be described by the following flow rules 
 

  ̇    ̇
  

    
           ̇   ̇

  

  
 (1.27) 

 
where λ is the damage multiplier.  The incremental form of thermodynamic force, stress and 
hardening for damage evolution ( ̇   ) is given as 
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Expanding the consistency condition ( ̇     ) and applying the chain rule: 
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Equations (1.28), (1.30), and (1.31) can be combined to get 
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The damage multiplier is thus 
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We can then rewrite the incremental stress strain relationship for damage evolution with 
equations (1.29 – 1.34) 
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The rate form of the damaged constitutive equation is given 
 
  ̇         ̇    ̇        (1.39) 
 
Since the second terms of the above two equations must be equal, the tangent constitutive tensor 
is given as 
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2.  SIERRA IMPLEMENTATION 
 
2.1. Integration Scheme 
 

When the damage activation function is greater than zero, additional damage occurs and 
the following integration scheme is invoked [1].  Rewrite equation (1.35) as 
 

  ̇  
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]  ̇    (2.1) 

 
Since the strain rate is constant for iteration k-1 to k in the integration scheme, linearization of 
the consistency equation for iteration k at timestep n+1 yields 
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Solving for the damage multiplier increment at the converged iteration k where gk = 0 yields 
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Then the damage state variables can be updated with the linearized flow rules as 
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This procedure is repeated until |   |       and |   |      . 
 
2.2. Small strain large deformation 
 

The previously described return mapping algorithm is used to solve the damage evolution 
of the stiffness tensor in a Kirchhoff material.  Given that polymer matrix composites damage at 
low strain levels, this formulation is applicable to wide array of structures undergoing small 
strains and large rotations. 

The material model accesses the updated left stretch (V) and rotation (R) tensors.  
However, an additional coordinate base change is needed to calculate strains in the material 
coordinate system.  A proper orthogonal rotation tensor (Q) is calculated based on user input and 
coordinate system.  This methodology is described in Section 2.3.  The following outlines the 
Sierra implementation. 
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1. Calculate the deformation gradient: 
 
            (2.6) 
 

2. Calculate the Green-Lagrange strain: 
 

     
 

 
(          ) (2.7) 

 
3. Push the Green-Lagrange strain into an intermediate configuration corresponding to the 

material coordinate system (Cartesian base change): 
 

    
            (2.8) 

 
4. Invoke the return mapping algorithm to determine updated second Piola-Kirchhoff stress: 

 
    

          
  (2.9) 

 
5. Pull back the second Piola-Kirchhoff stress from the intermediate (material) 

configuration into the reference configuration: 
 
           

     (2.10) 
 

6. Calculate the un-rotated Cauchy stress for Sierra output: 
 

    
  

 

 
          (2.11) 

 
 where            and      (   ) 
 
2.3. Material Orientations 
 

The tensor (Q) is calculated such that a coordinate base change of a second order tensor A 
is in the form 
 
    

            (2.12) 
 
where A is in global reference coordinates and Am is in material reference coordinates.  Similarly 
a “pull back” with           of Am results in 
 
           

     (2.13) 
 
The rows of the Q rotation tensor are simply the vectors that make up the local material reference 
coordinates as 
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where  ,̂  ̂ and  ̂ are the Cartesian coordinate unit vectors and  ̂ ,  ̂  and  ̂  are unit vectors in the 
primary material directions.  The rotation tensor is calculated by using a series of rotations based 
on user defined coordinate system (RC) and three Euler angles (  ,   ,   ) given by spatially 
dependent functions.  Q is generally defined as 
 
        

( )(  (  ))   
( )(  (  ))   

( )(  (  ))   
  (2.17) 

 
where Xa, Xb and Xc can be any global coordinate.  The user defined coordinate system can be 
rectangular, cylindrical or spherical defined as vectors that make up     .  The general indices (1, 
2, 3) for each coordinate direction will be: rectangular (x, y, z), cylindrical (r, θ, z) and spherical 
(r, θ, φ). 
 

Rotation about the first axis:     [
   
   
    

] (2.18) 

 

Rotation about the second axis:     [
    
   
   

] (2.19) 

 

Rotation about the third axis:     [
   
    
   

] (2.20) 

 
where      ( ) and      ( ). 
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3.  MATERIAL IDENTIFICATION 
 

The following section outlines test data and procedures necessary for material parameter 
determination.  Since the critical integrity parameter relates the actual remaining stiffness at 
failure to the undamaged stiffness, it is independent of crack closure coefficient.  However, 
under compression the damage parameter is calculated as 
 

     
(     )

   
  (3.1) 

 
which maintains the definition of damage being the ratio of cracked area to total area and 
integrity being the actual remaining stiffness at failure. 

If a linear term is included in the damage surface, the Tsai-Wu criteria is not analogous at 
γ + γo = 1 because of the independence of Y on the sign of stress for the uniaxial case.  An 
independent critical value of γ is required for each loading condition.  The value of the damage 
variable δ at failure can be determined by the ratio of the evolution equations 
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Integrating 3.2 for a monotonic uniaxial load, the critical damage evolution variables are 
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and in-plane shear      
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Where, Y1t, Y1c, Y1s and Y2s are the critical forces in tension, compression, axial due to shear and 
transverse due to shear respectively and for in-plane shear (3.5) axial damage is assumed zero. 
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Similar equations are generated for transverse normal and out of plane shear stresses.  The 
damage values at shear failure will be discussed later. 

The damage surface threshold value is determined by a pure in-plane shear test, where 
the damage is expected to be the greatest.  The shear stress at damage initiation is given as F4d 
and the state variable are δ = d11 = d22 = 0, thus the forces are 
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and plugging these into the damage surface and solving for γo we get 
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Since tension and compression are scaled by the crack closure terms, they can be solved 
independently.  The intermediate tensor Jijkl and in-plane shear crack closure coefficient      are 
solved by a set of three equations given in terms of  
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with unknowns J11, J22, γo and     .  Furthermore it is assumed that damage in the fiber direction 
due to in-plane shear stresses is negligible.  The in-plane shear failure relationship reduces to 
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The above equations are solved simultaneously using a numerical algorithm in Matlab, 
which can be obtained by contacting the author.  Similar independent equations can be generated 
for axial, transverse and out of plane compression and out of plane shear loads for determining 
remaining crack closure coefficients. 

The damage evolution coefficients are determined by a curve fit to a shear stress versus 
integrity curve.  A simple minimization of the stress residuals at a given integrity is used.  The 
model shear stress is related to integrity by the following relationship 
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Since the intermediate parameters are functions of the evolution parameters the above 

curve-fit must be solved iteratively.  For a given test vector {α β}, the intermediate parameters 
are uniquely defined; providing a set of stress values to compare with the experimental data. 

Standard tests are used to determine the elastic and strength properties.  A pure shear test 
is conducted in order to determine the stress versus integrity curve.  A monotonic load is possible 
if all damage is assumed elastic.  However, unloading is necessary in order to determine stiffness 
at intermediate steps if significant plastic strains are present.  For now we skip this step and 
present this data in terms of actual stress verses integrity. 
 The Tables 1 and 2 give example data presented in [1]. 
 

Table 1.  Elastic Properties 
 

Property Value 
E11  142000 MPa 
E22 10300 MPa 
E33 10300 MPa 
ν12 0.21 
ν13 0.21 
ν23 0.38 
G12 6420 MPa 
G13 6420 MPa 
G23 3710 MPa 

 



22 

Table 2.  Directional Strengths 
 

Property Value (Mpa) Integrity (Ω) 
F1t 1830 0.884 
F2t 57.0 0.500 
F3t 57.0 0.500 
F1c 1082 0.889 
F2c 57.0 0.500 
F3c 57.0 0.500 
F4 89.1 0.538 
F5 89.1 0.538 
F6 78.0 0.290 
F4d (threshold) 17.8 1.00 

 
A unique set of intermediate parameters exist for each set of evolution parameters α and 

β.  The evolution parameters are optimized by a simple constrained algorithm based on the sum 
of the squares of stress differences at each integrity value in the above data, where the stress 
values are obtained by solving the damage surface equations at each iteration.  Table 3 gives the 
fitted parameters. 
 

Table 3.  Model Parameters 
 

Property Value 
α 0.1144 
β -0.1198 
γo 0.0327 
J11 0.0524 
J22 1.5603 
J33 1.5603 
   
  1.1953 
   
  1.0 
   
  1.0 
   
  1.0656 
   
  1.0656 
   
  1.0625 
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Figure 2.  Shear stress verses shear integrity. 

 
Notice the endpoints of the above plot are constrained to the damage initiation and failure points 
by the intermediate damage surface criterion.  A preliminary verification is done with the curve 
fit, Matlab simulation version and the Abaqus UMAT under pure shear. 
 

 
Figure 3.  Shear stress verses shear integrity with model fits. 

 
Since the curve fit assumes no damage in the fiber direction, this figure shows that although d1 is 
not strictly zero in the model, the differences are negligible. 
 The above characterization is only one example of parameter estimation.  If less data is 
available, optimization of the parameters is possible.  Failure characterization using the critical 
thermodynamic force is possible [5] but will not be addressed in this report.  Future work will 
focus on damage to failure and rate effects of woven composites. 
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4.  EXAMPLE PROBLEMS 
 
4.1. Shell like geometry orientations 
 

A cone example is given to demonstrate orientation capabilities.  An arbitrary hollow 
cone segment with a rounded end is modeled (Figure 5).  The filament wound unidirectional 
composite cone consists of two layers.  The inner layer is a series of longitudinal wraps and the 
outer layer is made up of hoop wraps.  The orientation angle definition using spatial dependence 
is limited to geometries with large feature to thickness ratios. 

The Elastic Orthotropic Damage material model uses up to three rotation angle functions 
with inputs (abscissa) one of the global x, y, z coordinates and axis of rotation defined in a user 
coordinate system. 

The material rotations are shown in Figure 4a and 4b for arbitrary points in the inner and 
outer layers respectively.  The fixed global coordinate system, shown in black, is used to define 
the point in x, y, z coordinates.  These coordinates are then used to determine the local 
coordinates, shown in blue, based on a user defined coordinate system, in this case a cylindrical 
system as (R, θ, Z).  Note the cylindrical Z axis corresponds to the global x.  The resulting 
coordinate axes, designated with the subscript “Axis” serve as the initial material axes, where 
initially the moduli E11, E22 and E33 correspond to ERR, Eθθ and EZZ respectively.  These local 
axes are then rotated to correspond to the desired material configuration, shown in green.  In this 
case, both layers are rotated about the local θ (material 2) axis by αθ + 90⁰.  The 90⁰ rotation is 
used to define the material 1 axis in-plane and the material 3 axis out-of-plane.  Second, the outer 
(hoop) layer is rotated 90⁰ about the local material 3 axis.  With each rotation, a new coordinate 
system is created; therefore, the subsequent rotations are completed on intermediate systems.  
The intermediate axis 1’ is shown as a green dashed line. 

 

a.       b.  
 

Figure 4.  Rotation definitions for longitudinal (a) and hoop (b) layers. 
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The following expression gives the orientation angle (αθ+90) for the curve between the 

hoop and longitudinal layers.  The transition from cone to dome is at x = 295.23, the dome 
centers are located at x = 309.12 and the inner and outer domes radii are r = 78.75 and r = 81.25 
respectively. 
 
    

begin function alpha_theta_inner 

  type is analytic 

  evaluate expression is "x <= 295.23 ? 10.0 + 90 : asin((309.12-x)/78.75)*180/pi + 90;" 

end function alpha_theta_inner 

# 

begin function alpha_theta_outer 

  type is analytic 

  evaluate expression is "x <= 295.23 ? 10.0 + 90 : asin((309.12-x)/81.25)*180/pi + 90;" 

end function alpha_theta_outer 

 

 

 
Figure 5.  Cross section showing out of plane normals (material 3). 

 
4.2. Laminate Plate 
 

Given is an example of modeling a 24 layer laminate plate (Fig. 6).  Orientation angles 
are given in the global rectangular system as a piecewise constant function of depth (y).  The 24 
layers are simply modeled as 24 elements through the thickness.  The angle function is shown in 
Fig. 7. 
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Figure 6.  Laminate like angle distribution in a 3D solid. 

 
Figure 7.  Piecewise angle distribution as a function of through thickness direction (y). 
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5.  CONCLUSIONS 
 
 A general CDM orthotropic material model has been detailed and user guidance, material 
characterization and examples are provided.  The resulting constitutive model is relevant for 
many composite materials.  In addition, the thermodynamic framework and general orthotropic 
orientation capabilities provide adaptability for future damage evolution/failure models.   
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APPENDIX A:  SIERRA MATERIAL MODEL SYNTAX 
 
Elastic Orthotropic Continuous Damage Mechanics Material Model: 
 
BEGIN MATERIAL <string>mat_name 

DENSITY = <real>density_value 

BIOTS COEFFICIENT = <real>biots_value 

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_DAMAGE 

# General parameters (any two are required) 

YOUNGS MODULUS    = <real>youngs_modulus 

POISSONS RATIO    = <real>poissons_ratio 

SHEAR MODULUS     = <real>shear_modulus 

BULK MODULUS      = <real>bulk_modulus 

LAMBDA            = <real>lambda 

# Required parameters 

E11               = <real>e11 

E22               = <real>e22 

E33               = <real>e33 

NU12              = <real>nu12 

NU13              = <real>nu13 

NU23              = <real>nu23 

G12               = <real>g12 

G13               = <real>g13 

G23               = <real>g23 

ALPHAD            = <real>alphad 

BETAD             = <real>betad 

GAMMA0            = <real>gamma0 

J1                = <real>j1 

J2                = <real>j2 

J3                = <real>j3 

CN11              = <real>cn11 

CN22              = <real>cn22 

CN33              = <real>cn33 

CS12              = <real>cs12 

CS13              = <real>cs13 

CS23              = <real>cs23 

ANGLE_1_ABSCISSA  = <real>angle_1_abscissa 

ANGLE_2_ABSCISSA  = <real>angle_2_abscissa 

ANGLE_3_ABSCISSA  = <real>angle_3_abscissa 

ROTATION_AXIS_1   = <real>rotation_axis_1 

ROTATION_AXIS_2   = <real>rotation_axis_2 

ROTATION_AXIS_3   = <real>rotation_axis_3 

ANGLE_1_FUNCTION  = <string>angle_1_function_name 

ANGLE_2_FUNCTION  = <string>angle_2_function_name 

ANGLE_3_FUNCTION  = <string>angle_3_function_name 

COORDINATE SYSTEM = <string>coordinate_system_name 

END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_DAMAGE] 
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