31 research outputs found

    A novel chalcone derivative which acts as a microtubule depolymerising agent and an inhibitor of P-gp and BCRP in in-vitro and in-vivo glioblastoma models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the past decades, in spite of intensive search, no significant increase in the survival of patients with glioblastoma has been obtained. The role of the blood-brain barrier (BBB) and especially the activity of efflux pumps belonging to the ATP Binding Cassette (ABC) family may, in part, explain this defect.</p> <p>Methods</p> <p>The <it>in-vitro </it>activities of JAI-51 on cell proliferation were assessed by various experimental approaches in four human and a murine glioblastoma cell lines. Using drug exclusion assays and flow-cytometry, potential inhibitory effects of JAI-51 on P-gp and BCRP were evaluated in sensitive or resistant cell lines. JAI-51 activity on <it>in-vitro </it>microtubule polymerization was assessed by tubulin polymerization assay and direct binding measurements by analytical ultracentrifugation. Finally, a model of C57BL/6 mice bearing subcutaneous GL26 glioblastoma xenografts was used to assess the activity of the title compound <it>in vivo</it>. An HPLC method was designed to detect JAI-51 in the brain and other target organs of the treated animals, as well as in the tumours.</p> <p>Results</p> <p>In the four human and the murine glioblastoma cell lines tested, 10 ÎĽM JAI-51 inhibited proliferation and blocked cells in the M phase of the cell cycle, via its activity as a microtubule depolymerising agent. This ligand binds to tubulin with an association constant of 2 Ă— 10<sup>5 </sup>M<sup>-1</sup>, overlapping the colchicine binding site. JAI-51 also inhibited the activity of P-gp and BCRP, without being a substrate of these efflux pumps. These <it>in vitro </it>studies were reinforced by our <it>in vivo </it>investigations of C57BL/6 mice bearing GL26 glioblastoma xenografts, in which JAI-51 induced a delay in tumour onset and a tumour growth inhibition, following intraperitoneal administration of 96 mg/kg once a week. In accordance with these results, JAI-51 was detected by HPLC in the tumours of the treated animals. Moreover, JAI-51 was detected in the brain, showing that the molecule is also able to cross the BBB.</p> <p>Conclusion</p> <p>These <it>in vitro </it>and <it>in vivo </it>data suggest that JAI-51 could be a good candidate for a new treatment of tumours of the CNS. Further investigations are in progress to associate the title compound chemotherapy to radiotherapy in a rat model.</p

    Synthesis and biological evaluation of 4 arylcoumarin analogues as tubulin-targeting antitumor agents

    No full text
    International audienceThe synthesis of twenty-six 4-arylcoumarin analogues of combretastatin A-4 (CA-4) led to the identification of two new compounds (25 and 26) with strong cytotoxic activity. Both compounds had a high cytotoxic effect on a CA-4-resistant colon adenocarcinoma cell line (HT29D4). The compounds affected cell cycle progression characterized by a mitotic block. The activity of these compounds against microtubules both in vitro and in cells was examined and both compounds were found to potently inhibit in vitro microtubule formation via a sub-stoichiometric mode like CA-4. By immunofluorescence, it was observed that both compounds induced strong microtubule network disruption. Our results provide a strong experimental basis to develop new potent anti-tubulin molecules targeting CA-4-resistant cancer cells

    Stathmin/Op18 is a novel mediator of vinblastine activity

    Get PDF
    International audienceMicrotubule (MT) dynamic instability is tightly regulated by stabilizing and destabilizing proteins, the latter being exemplified by stathmin/Op18, a protein known to destabilize MTs. Studies in cells have indicated that the level of stathmin expression modifies the cytotoxicity of antimicrotubule drugs, such as vinblastine (VLB). Using isothermal titration calorimetry and analytical ultracentrifugation, we show that VLB increases the affinity of stathmin for tubulin 50-fold (and vice versa). These results are the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and reveal a new mechanism of action for VLB

    Identification of the three zinc-binding sites on tau protein

    No full text
    International audienceTau protein has been extensively studied due to its key roles in microtubular cytoskeleton regulation and in the formation of aggregates found in some neurodegenerative diseases. Recently it has been shown that zinc is able to induce tau aggregation by interacting with several binding sites. However, the precise location of these sites and the molecular mechanism of zinc-induced aggregation remain unknown. Here we used Nuclear Magnetic Resonance (NMR) to identify zinc binding sites on tau. These experiments revealed three distinct zinc binding sites on tau, located in the N-terminal part, the repeat region and the C-terminal part. Further analysis enabled us to show that the N-terminal and the C-terminal sites are independent of each other. Using molecular simulations, we proposed a model of each site in a complex with zinc. Given the clinical importance of zinc in tau aggregation, our findings pave the way for designing potential therapies for tauopathies

    Caulerpenyne binding to tubulin: structural modifications by a non conventional pharmacological agent.

    No full text
    International audienceThe most widely used molecules in cancer chemotherapy are Vinca-alkaloids and Taxoids, numerous chemists attempted the synthesis of analogs which bind to their well-known tubulin pharmacological site. Unfortunately, tumors develop resistance to these compounds; therefore the definition of anchoring points and potential binding sites for new drugs on tubulin is of major interest. Caulerpenyne (Cyn), the major secondary metabolite synthesized by the green marine alga Caulerpa taxifolia could be one of these drugs, since it inhibits the assembly of tubulin and MTP (Barbier et al., 2001). We observed that the tubulin-Cyn complex is poorly reversed. Cyn did not bind to sulfhydryl groups and the measure of the extent of binding is 1.6 +/- 0.2 suggesting two potential binding sites. Then, we demonstrated by competition measurements that Cyn did not interact to colchicine, Taxol and Vinca-alkaloid binding domain. Finally, mass spectrometric analysis of proteolytic cleavage of tubulin-Cyn complex demonstrated that Cyn did not bind covalently to tubulin and evidenced two good candidate regions for Cyn binding, one on alpha-tubulin and the other on beta-tubulin

    2-Aminothiazole-Flavonoid Hybrid Derivatives Binding to Tau Protein and Responsible for Antitumor Activity in Glioblastoma

    No full text
    International audienceTau protein has been described for several decades as a promoter of tubulin assembly into microtubules. Dysregulation or alterations in Tau expression have been related to various brain cancers, including the highly aggressive and lethal brain tumor glioblastoma multiform (GBM). In this respect, Tau holds significant promise as a target for the development of novel therapies. Here, we examined the structure–activity relationship of a new series of seventeen 2-aminothiazole-fused to flavonoid hybrid compounds (TZF) on Tau binding, Tau fibrillation, and cellular effects on Tau-expressing cancer cells. By spectrofluorometric approach, we found that two compounds, 2 and 9, demonstrated high affinity for Tau and exhibited a strong propensity to inhibit Tau fibrillation. Then, the biological activity of these compounds was evaluated on several Tau-expressing cells derived from glioblastoma. The two lead compounds displayed a high anti-metabolic activity on cells related to an increased fission of the mitochondria network. Moreover, we showed that both compounds induced microtubule bundling within newly formed neurite-like protrusions, as well as with defection of cell migration. Taken together, our results provide a strong experimental basis to develop new potent molecules targeting Tau-expressing cancer cells, such as GBM

    Hsp90 Oligomerization Process: How Can p23 Drive the Chaperone Machineries?

    No full text
    International audienceThe 90-kDa heat shock protein (Hsp90) is a highly flexible dimer that is able to self-associate in the presence of divalent cations or under heat shock. In a previous work, we focused on the Mg2+-induced oligomerization process of Hsp90, and characterized the oligomers. Combining analytical ultracentrifugation, size-exclusion chromatography coupled to multi-angle laser light scattering and high-mass matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we studied the interaction of p23 with both Hsp90 dimer and oligomers. Even if p23 predominantly binds the Hsp90 dimer, we demonstrated, for the first time, that p23 is also able to interact with Hsp90 oligomers, shifting the Hsp90 dimer-oligomers equilibrium toward dimer. Our results showed that the Hsp90:p23 binding stoichiometry decreases with the Hsp90 oligomerization degree. Therefore, we propose a model in which p23 would act as a "protein wedge" regarding the Hsp90 dimer closure and the Hsp90 oligomerization process
    corecore