23 research outputs found

    Frequency of pneumothorax and haemothorax after primary open versus closed implantation strategies for insertion of a totally implantable venous access port in oncological patients: study protocol for a randomised controlled trial

    Get PDF
    Background: The insertion of central venous access devices, such as totally implantable venous access ports (TIVAPs), is routine in patients who need a safe and permanent venous access. The number of port implantations is increasing due to the development of innovative adjuvant and neo-adjuvant therapies. Currently, two different strategies are being routinely used: surgical cut-down of the cephalic vein (vena section) and direct puncture of the subclavian vein. The aim of this trial is to identify the strategy for the implantation of TIVAPs with the lowest risk of pneumothorax and haemothorax. Methods/Design: The PORTAS-3 trial is designed as a multicentre, randomised controlled trial to compare two implantation strategies. A total of 1,154 patients will be randomised after giving written informed consent. Patients must be over 18 years of age and scheduled for primary implantation of a TIVAP on the designated side. The primary endpoint will be the frequency of pneumothorax and haemothorax after insertion of a TIVAP by one of two different strategies. The experimental intervention is as follows: open strategy, defined as surgical cut-down of the cephalic vein, supported by a rescue technique if necessary, and in the case of failure, direct puncture of the subclavian vein. The control intervention is as follows: direct puncture of the subclavian vein using the Seldinger technique guided by sonography, fluoroscopy or landmark technique. The trial duration is approximately 36 months, with a recruitment period of 18 months and a follow-up period of 30 days. Discussion: The PORTAS-3 trial will compare two different TIVAP implantation strategies with regard to their individual risk of postoperative pneumothorax and haemothorax. Since TIVAP implantation is one of the most common procedures in general surgery, the results will be of interest for a large community of surgeons as well as oncologists and general practitioners. The pragmatic trial design ensures that the results will be generalizable to a wide range of patients. Trial registration: The trial protocol was registered on 28 August 2014 with the German Clinical Trials Register (DRKS00004900). The World Health Organization’s Universal Trial Number is U1111-1142-4420

    Gene expression analysis of pancreatic cell lines reveals genes overexpressed in pancreatic cancer

    Get PDF
    Background: Pancreatic cancer is one of the leading causes of cancer-related death. Using DNA gene expression analysis based on a custom made Affymetrix cancer array, we investigated the expression pattern of both primary and established pancreatic carcinoma cell lines. Methods: We analyzed the gene expression of 5 established pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-1, Capan-2 and HPAF II) and 5 primary isolates, 1 of them derived from benign pancreatic duct cells. Results: Out of 1,540 genes which were expressed in at least 3 experiments, we found 122 genes upregulated and 18 downregulated in tumor cell lines compared to benign cells with a fold change > 3. Several of the upregulated genes (like Prefoldin 5, ADAM9 and E-cadherin) have been associated with pancreatic cancer before. The other differentially regulated genes, however, play a so far unknown role in the course of human pancreatic carcinoma. By means of immunohistochemistry we could show that thymosin [β-10 (TMSB10), upregulated in tumor cell lines, is expressed in human pancreatic carcinoma, but not in non-neoplastic pancreatic tissue, suggesting a role for TMSB10 in the carcinogenesis of pancreatic carcinoma. Conclusion: Using gene expression profiling of pancreatic cell lines we were able to identify genes differentially expressed in pancreatic adenocarcinoma, which might contribute to pancreatic cancer development.Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich

    Worldwide trends in volume and quality of published protocols of randomized controlled trials

    Get PDF
    <div><p>Introduction</p><p>Publishing protocols of randomized controlled trials (RCT) facilitates a more detailed description of study rational, design, and related ethical and safety issues, which should promote transparency. Little is known about how the practice of publishing protocols developed over time. Therefore, this study describes the worldwide trends in volume and methodological quality of published RCT protocols.</p><p>Methods</p><p>A systematic search was performed in PubMed and EMBASE, identifying RCT protocols published over a decade from 1 September 2001. Data were extracted on quality characteristics of RCT protocols. The primary outcome, methodological quality, was assessed by individual methodological characteristics (adequate generation of allocation, concealment of allocation and intention-to-treat analysis). A comparison was made by publication period (First, September 2001- December 2004; Second, January 2005-May 2008; Third, June 2008-September 2011), geographical region and medical specialty.</p><p>Results</p><p>The number of published RCT protocols increased from 69 in the first, to 390 in the third period (<i>p</i><0.0001). Internal medicine and paediatrics were the most common specialty topics. Whereas most published RCT protocols in the first period originated from North America (n = 30, 44%), in the second and third period this was Europe (respectively, n = 65, 47% and n = 190, 48%, <i>p</i> = 0.02). Quality of RCT protocols was higher in Europe and Australasia, compared to North America (OR = 0.63, CI = 0.40–0.99, <i>p</i> = 0.04). Adequate generation of allocation improved with time (44%, 58%, 67%, <i>p</i> = 0.001), as did concealment of allocation (38%, 53%, 55%, <i>p</i> = 0.03). Surgical protocols had the highest quality among the three specialty topics used in this study (OR = 1.94, CI = 1.09–3.45, <i>p</i> = 0.02).</p><p>Conclusion</p><p>Publishing RCT protocols has become popular, with a five-fold increase in the past decade. The quality of published RCT protocols also improved, although variation between geographical regions and across medical specialties was seen. This emphasizes the importance of international standards of comprehensive training in RCT methodology.</p></div

    Gene Expression Profiling of Microdissected Pancreatic Ductal Carcinomas Using High-Density DNA Microarrays,

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) remains an important cause of malignancy-related death and is the eighth most common cancer with the lowest overall 5-year relative survival rate. To identify new molecular markers and candidates for new therapeutic regimens, we investigated the gene expression profile of microdissected cells from 11 normal pancreatic ducts, 14 samples of PDAC, and 4 well-characterized pancreatic cancer cell lines using the Affymetrix U133 GeneChip set. RNA was extracted from microdissected samples and cell lines, amplified, and labeled using a repetitive in vitro transcription protocol. Differentially expressed genes were identified using the significance analysis of microarrays program. We found 616 differentially expressed genes. Within these, 140 were also identified in PDAC by others, such as Galectin-1, Galectin-3, and MT-SP2. We validated the differential expression of several genes (e.g., CENPF, MCM2, MCM7, RAMP, IRAK1, and PTTG1) in PDAC by immunohistochemistry and reverse transcription polymerase chain reaction. We present a whole genome expression study of microdissected tissues from PDAC, from microdissected normal ductal pancreatic cells and pancreatic cancer cell lines using highdensity microarrays. Within the panel of genes, we identified novel differentially expressed genes, which have not been associated with the pathogenesis of PDAC before

    Clinical phase I/II trial to investigate preoperative dose-escalated intensity-modulated radiation therapy (IMRT) and intraoperative radiation therapy (IORT) in patients with retroperitoneal soft tissue sarcoma : interim analysis

    Get PDF
    Background: To report an unplanned interim analysis of a prospective, one-armed, single center phase I/II trial (NCT01566123). Methods: Between 2007 and 2013, 27 patients (pts) with primary/recurrent retroperitoneal sarcomas (size > 5 cm, M0, at least marginally resectable) were enrolled. The protocol attempted neoadjuvant IMRT using an integrated boost with doses of 45-50 Gy to PTV and 50-56 Gy to GTV in 25 fractions, followed by surgery and IOERT (10-12 Gy). Primary endpoint was 5-year-LC, secondary endpoints included PFS, OS, resectability, and acute/late toxicity. The majority of patients showed high grade lesions (FNCLCC G1:18%, G2:52%, G3:30%), predominantly liposarcomas (70%). Median tumor size was 15 cm (6-31). Results: Median follow-up was 33 months (5-75). Neoadjuvant IMRT was performed as planned (median dose 50 Gy, 26-55) in all except 2 pts (93%). Gross total resection was feasible in all except one patient. Final margin status was R0 in 6 (22%) and R1 in 20 pts (74%). Contiguous-organ resection was needed in all grossly resected patients. IOERT was performed in 23 pts (85%) with a median dose of 12 Gy (10-20 Gy).We observed 7 local recurrences, transferring into estimated 3- and 5-year-LC rates of 72%. Two were located outside the EBRT area and two were observed after more than 5 years. Locally recurrent situation had a significantly negative impact on local control. Distant failure was found in 8 pts, resulting in 3- and 5-year-DC rates of 63%. Patients with leiomyosarcoma had a significantly increased risk of distant failure. Estimated 3- and 5-year-rates were 40% for PFS and 74% for OS. Severe acute toxicity (grade 3) was present in 4 pts (15%). Severe postoperative complications were found in 9 pts (33%), of whom 2 finally died after multiple re-interventions. Severe late toxicity (grade 3) was scored in 6% of surviving patients after 1 year and none after 2 years. Conclusion: Combination of neoadjuvant IMRT, surgery and IOERT is feasible with acceptable toxicity and yields good results in terms of LC and OS in patients with high-risk retroperitoneal sarcomas. Long term follow-up seems mandatory given the observation of late recurrences. Accrual of patients will be continued with extended follow-up
    corecore