319 research outputs found

    The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection

    Get PDF
    Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen intermediates (ROI). A recent structure of the C-terminal DNA-binding domain of Lsr2 provides a rationale for its interaction with the minor groove of DNA, its preference for AT-rich tracts, and its similarity to other bacterial nucleoid-associated DNA-binding domains. In contrast, the details of Lsr2 dimerization (and oligomerization) via its N-terminal domain, and the mechanism of Lsr2-mediated chromosomal cross-linking and protection is unknown. We have solved the structure of the N-terminal domain of Lsr2 (N-Lsr2) at 1.73 Å resolution using crystallographic ab initio approaches. The structure shows an intimate dimer of two ß-ß-a motifs with no close homologues in the structural databases. The organization of individual N-Lsr2 dimers in the crystal also reveals a mechanism for oligomerization. Proteolytic removal of three N-terminal residues from Lsr2 results in the formation of an anti-parallel ÎČ-sheet between neighboring molecules and the formation of linear chains of N-Lsr2. Oligomerization can be artificially induced using low concentrations of trypsin and the arrangement of N-Lsr2 into long chains is observed in both monoclinic and hexagonal crystallographic space groups. In solution, oligomerization of N-Lsr2 is also observed following treatment with trypsin. A change in chromosomal topology after the addition of trypsin to full-length Lsr2-DNA complexes and protection of DNA towards DNAse digestion can be observed using electron microscopy and electrophoresis. These results suggest a mechanism for oligomerization of Lsr2 via protease-activation leading to chromosome compaction and protection, and concomitant down-regulation of large numbers of genes. This mechanism is likely to be relevant under conditions of stress where cellular proteases are known to be upregulated

    Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans

    Get PDF
    Very little is known about the growth and mutation rates of Mycobacterium tuberculosis during latent infection in humans. However, studies in rhesus macaques have suggested that latent infections have mutation rates that are higher than that observed during active tuberculosis disease. Elevated mutation rates are presumed risk factors for the development of drug resistance. Therefore, the investigation of mutation rates during human latency is of high importance. We performed whole genome mutation analysis of M. tuberculosis isolates from a multi-decade tuberculosis outbreak of the New Zealand Rangipo strain. We used epidemiological and phylogenetic analysis to identify four cases of tuberculosis acquired from the same index case. Two of the tuberculosis cases occurred within two years of exposure and were classified as recently transmitted tuberculosis. Two other cases occurred more than 20 years after exposure and were classified as reactivation of latent M. tuberculosis infections. Mutation rates were compared between the two recently transmitted pairs versus the two latent pairs. Mean mutation rates assuming 20 hour generation times were 5.5X10⁻Âč⁰ mutations/bp/generation for recently transmitted tuberculosis and 7.3X10⁻ÂčÂč mutations/bp/generation for latent tuberculosis. Generation time versus mutation rate curves were also significantly higher for recently transmitted tuberculosis across all replication rates (p = 0.006). Assuming identical replication and mutation rates among all isolates in the final two years before disease reactivation, the u20hr mutation rate attributable to the remaining latent period was 1.6×10⁻ÂčÂč mutations/bp/generation, or approximately 30 fold less than that calculated during the two years immediately before disease. Mutations attributable to oxidative stress as might be caused by bacterial exposure to the host immune system were not increased in latent infections. In conclusion, we did not find any evidence to suggest elevated mutation rates during tuberculosis latency in humans, unlike the situation in rhesus macaques

    Posters

    Get PDF

    Using biomarkers to predict TB treatment duration (Predict TB): a prospective, randomized, noninferiority, treatment shortening clinical trial

    Get PDF
    Background : By the early 1980s, tuberculosis treatment was shortened from 24 to 6 months, maintaining relapse rates of 1-2%. Subsequent trials attempting shorter durations have failed, with 4-month arms consistently having relapse rates of 15-20%. One trial shortened treatment only among those without baseline cavity on chest x-ray and whose month 2 sputum culture converted to negative. The 4-month arm relapse rate decreased to 7% but was still significantly worse than the 6-month arm (1.6%, P<0.01).  We hypothesize that PET/CT characteristics at baseline, PET/CT changes at one month, and markers of residual bacterial load will identify patients with tuberculosis who can be cured with 4 months (16 weeks) of standard treatment.Methods: This is a prospective, multicenter, randomized, phase 2b, noninferiority clinical trial of pulmonary tuberculosis participants. Those eligible start standard of care treatment. PET/CT scans are done at weeks 0, 4, and 16 or 24. Participants who do not meet early treatment completion criteria (baseline radiologic severity, radiologic response at one month, and GeneXpert-detectable bacilli at four months) are placed in Arm A (24 weeks of standard therapy). Those who meet the early treatment completion criteria are randomized at week 16 to continue treatment to week 24 (Arm B) or complete treatment at week 16 (Arm C). The primary endpoint compares the treatment success rate at 18 months between Arms B and C.Discussion: Multiple biomarkers have been assessed to predict TB treatment outcomes. This study uses PET/CT scans and GeneXpert (Xpert) cycle threshold to risk stratify participants. PET/CT scans are not applicable to global public health but could be used in clinical trials to stratify participants and possibly become a surrogate endpoint. If the Predict TB trial is successful, other immunological biomarkers or transcriptional signatures that correlate with treatment outcome may be identified. TRIAL REGISTRATION: NCT02821832

    A Geographically-Restricted but Prevalent Mycobacterium tuberculosis Strain Identified in the West Midlands Region of the UK between 1995 and 2008

    Get PDF
    Background: We describe the identification of, and risk factors for, the single most prevalent Mycobacterium tuberculosis strain in the West Midlands region of the UK.Methodology/Principal Findings: Prospective 15-locus MIRU-VNTR genotyping of all M. tuberculosis isolates in the West Midlands between 2004 and 2008 was undertaken. Two retrospective epidemiological investigations were also undertaken using univariable and multivariable logistic regression analysis. The first study of all TB patients in the West Midlands between 2004 and 2008 identified a single prevalent strain in each of the study years (total 155/3,056 (5%) isolates). This prevalent MIRU-VNTR profile (32333 2432515314 434443183) remained clustered after typing with an additional 9-loci MIRU-VNTR and spoligotyping. The majority of these patients (122/155, 79%) resided in three major cities located within a 40 km radius. From the apparent geographical restriction, we have named this the "Mercian" strain. A multivariate analysis of all TB patients in the West Midlands identified that infection with a Mercian strain was significantly associated with being UK-born (OR = 9.03, 95% CI = 4.56-17.87, p 65 years old (OR = 0.25, 95% CI = 0.09-0.67, p < 0.01). A second more detailed investigation analyzed a cohort of 82 patients resident in Wolverhampton between 2003 and 2006. A significant association with being born in the UK remained after a multivariate analysis (OR = 9.68, 95% CI = 2.00-46.78, p < 0.01) and excess alcohol intake and cannabis use (OR = 6.26, 95% CI = 1.45-27.02, p = .01) were observed as social risk factors for infection.Conclusions/Significance: The continued consistent presence of the Mercian strain suggests ongoing community transmission. Whilst significant associations have been found, there may be other common risk factors yet to be identified. Future investigations should focus on targeting the relevant risk groups and elucidating the biological factors that mediate continued transmission of this strain

    Tuberculosis Microepidemics among Dispersed Migrants, Birmingham, UK, 2004-2013

    Get PDF
    MIRU-VNTR typing was supported by the Public Health England National TB Strain Typing Project. M.M. is funded by the UK Clinical Research Collaboration Modernising Medical Microbiology Consortium. C.B. is funded by the Heart of Birmingham Primary Care Trust and Public Health England

    Xpert MTB/RIF Assay Shows Faster Clearance of Mycobacterium tuberculosis DNA with Higher Levels of Rifapentine Exposure.

    Get PDF
    The Xpert MTB/RIF assay is both sensitive and specific as a diagnostic test. Xpert also reports quantitative output in cycle threshold (CT) values, which may provide a dynamic measure of sputum bacillary burden when used longitudinally. We evaluated the relationship between Xpert CT trajectory and drug exposure during tuberculosis (TB) treatment to assess the potential utility of Xpert CT for treatment monitoring. We obtained serial sputum samples from patients with smear-positive pulmonary TB who were consecutively enrolled at 10 international clinical trial sites participating in study 29X, a CDC-sponsored Tuberculosis Trials Consortium study evaluating the tolerability, safety, and antimicrobial activity of rifapentine at daily doses of up to 20 mg/kg of body weight. Xpert was performed at weeks 0, 2, 4, 6, 8, and 12. Longitudinal CT data were modeled using a nonlinear mixed effects model in relation to rifapentine exposure (area under the concentration-time curve [AUC]). The rate of change of CT was higher in subjects receiving rifapentine than in subjects receiving standard-dose rifampin. Moreover, rifapentine exposure, but not assigned dose, was significantly associated with rate of change in CT (P = 0.02). The estimated increase in CT slope for every additional 100 Όg · h/ml of rifapentine drug exposure (as measured by AUC) was 0.11 CT/week (95% confidence interval [CI], 0.05 to 0.17). Increasing rifapentine exposure is associated with a higher rate of change of Xpert CT, indicating faster clearance of Mycobacterium tuberculosis DNA. These data suggest that the quantitative outputs of the Xpert MTB/RIF assay may be useful as a dynamic measure of TB treatment response

    Selective amplification of Brucella melitensis mRNA from a mixed host-pathogen total RNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brucellosis is a worldwide anthropozoonotic disease caused by an in vivo intracellular pathogen belonging to genus <it>Brucella</it>. The characterization of brucelae transcriptome's during host-pathogen interaction has been limited due to the difficulty of obtaining an adequate quantity of good quality eukaryotic RNA-free pathogen RNA for downstream applications.</p> <p>Findings</p> <p>Here, we describe a combined protocol to prepare RNA from intracellular <it>B. melitensis </it>in a quantity and quality suitable for pathogen gene expression analysis. Initially, <it>B. melitensis </it>total RNA was enriched from a host:pathogen mixed RNA sample by reducing the eukaryotic RNA..Then, to increase the <it>Brucella </it>RNA concentration and simultaneously minimize the contaminated host RNA in the mixed sample, a specific primer set designed to anneal to all <it>B. melitensis </it>ORF allows the selective linear amplification of sense-strand prokaryotic transcripts in a previously enriched RNA sample.</p> <p>Conclusion</p> <p>The novelty of the method we present here allows analysis of the gene expression profile of <it>B. melitensis </it>when limited amounts of pathogen RNA are present, and is potentially applicable to both <it>in vivo </it>and <it>in vitro </it>models of infection, even at early infection time points.</p
    • 

    corecore