545 research outputs found

    Ariel - Volume 11 Number 5

    Get PDF
    Executive Editors Ellen Feldman Leonardo S. Nasca, Jr. Business Managers Alex Macones Martin B. Getzow News Editor Hugh A. Gelabert Features Editor Aaron D. Bleznak CAHS Editor Joan M. Greco Editorial Page Editor Samuel Markind Photography Editor Todd L. Demmy Sports Editor Paul F. Mansfield Commons Editor Saul I. Helfin

    Neutropenia as an adverse event following vaccination : results from randomized clinical trials in healthy adults and systematic review

    Get PDF
    Background : In the context of early vaccine trials aimed at evaluating the safety profile of novel vaccines, abnormal haematological values, such as neutropenia, are often reported. It is therefore important to evaluate how these trials should be planned not to miss potentially important safety signals, but also to understand the implications and the clinical relevance. Methodology : We report and discuss the results from five clinical trials (two with a new Shigella vaccine in the early stage of clinical development and three with licensed vaccines) where the absolute neutrophil counts (ANC) were evaluated before and after vaccination. Additionally, we have performed a systematic review of the literature on cases of neutropenia reported during vaccine trials to discuss our results in a more general context. Principal Findings : Both in our clinical trials and in the literature review, several cases of neutropenia have been reported, in the first two weeks after vaccination. However, neutropenia was generally transient and had a benign clinical outcome, after vaccination with either multiple novel candidates or well-known licensed vaccines. Additionally, the vaccine recipients with neutropenia frequently had lower baseline ANC than non-neutropenic vaccinees. In many instances neutropenia occurred in subjects of African descent, known to have lower ANC compared to western populations. Conclusions : It is important to include ANC and other haematological tests in early vaccine trials to identify potential safety signals. Post-vaccination neutropenia is not uncommon, generally transient and clinically benign, but many vaccine trials do not have a sampling schedule that allows its detection. Given ethnic variability in the level of circulating neutrophils, normal ranges taking into account ethnicity should be used for determination of trial inclusion/exclusion criteria and classification of neutropenia related adverse events

    Monoclonal Antibodies of a Diverse Isotype Induced by an O-Antigen Glycoconjugate Vaccine Mediate In Vitro and In Vivo Killing of African Invasive Nontyphoidal Salmonella.

    Get PDF
    Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovars Typhimurium and Enteritidis, is responsible for a major global burden of invasive disease with high associated case-fatality rates. We recently reported the development of a candidate O-antigen-CRM197 glycoconjugate vaccine against S. Typhimurium. Here, using a panel of mouse monoclonal antibodies generated by the vaccine, we examined the relative efficiency of different antibody isotypes specific for the O:4 antigen of S. Typhimurium to effect in vitro and in vivo killing of the invasive African S. Typhimurium strain D23580. All O:4-specific antibody isotypes could mediate cell-free killing and phagocytosis of S. Typhimurium by mouse blood cells. Opsonization of Salmonella with O:4-specific IgA, IgG1, IgG2a, and IgG2b, but not IgM, resulted in cell-dependent bacterial killing. At high concentrations, O:4-specific antibodies inhibited both cell-free complement-mediated and cell-dependent opsonophagocytic killing of S. Typhimurium in vitro. Using passive immunization in mice, the O:4-specific antibodies provided in vivo functional activity by decreasing the bacterial load in the blood and tissues, with IgG2a and IgG2b being the most effective isotypes. In conclusion, an O-antigen-CRM197 glycoconjugate vaccine can induce O-antigen-specific antibodies of different isotypes that exert in vitro and in vivo killing of S. Typhimurium.This work was supported by a European Union FP7 Industry and Academia Partnerships and Pathways award, GENDRIVAX (Genome-driven vaccine development for bacterial infections). This is a collaboration between the Novartis Vaccines Institute for Global Health, Wellcome Trust Sanger Institute, Swiss Tropical and Public Health Institute and Kenyan Medical Research Institute [grant number 251522]. CAM is the recipient of a Clinical Research Fellowship from GlaxoSmithKline.This is the final version of the article. It first appeared from the American Society for Microbiology via http://dx.doi.org/10.1128/IAI.00547-1

    Transmission-blocking activity induced by malaria vaccine candidates Pfs25/Pvs25 is a direct and predictable function of antibody titer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mosquito stage malaria vaccines are designed to induce an immune response in the human host that will block the parasite's growth in the mosquito and consequently block transmission of the parasite. A mosquito membrane-feeding assay (MFA) is used to test transmission-blocking activity (TBA), but in this technique cannot accommodate many samples. A clear understanding of the relationship between antibody levels and TBA may allow ELISA determinations to be used to predict TBA and assist in planning vaccine development.</p> <p>Methods</p> <p>Rabbit anti-Pfs25 sera and monkey anti-Pvs25 sera were generated and the antibody titers were determined by a standardized ELISA. The biological activity of the same sera was tested by MFA using <it>Plasmodium </it>gametocytes (cultured <it>Plasmodium falciparum </it>or <it>Plasmodium vivax </it>from malaria patients) and <it>Anopheles </it>mosquitoes.</p> <p>Results</p> <p>Anti-Pfs25 and anti-Pvs25 sera showed that ELISA antibody units correlate with the percent reduction in the oocyst density per mosquito (Spearman Rank correlations: 0.934 and 0.616, respectively), and fit a hyperbolic curve when percent reduction in oocyst density is plotted against antibody units of the tested sample. Antibody levels also correlated with the number of mosquitoes that failed to become infected, and this proportion can be calculated from the reduction in oocyst numbers and the distribution of oocysts per infected mosquito in control group.</p> <p>Conclusion</p> <p>ELISA data may be used as a surrogate for the MFA to evaluate transmission-blocking vaccine efficacy. This will facilitate the evaluation of transmission-blocking vaccines and implementation of this malaria control strategy.</p

    Population genetic structure associated with a landscape barrier in the Western Grasswren (Amytornis textilis textilis)

    Get PDF
    Dispersal patterns can dictate genetic population structure and, ultimately, population resilience, through maintaining gene flow and genetic diversity. However, geographical landforms, such as peninsulas, can impact dispersal patterns and thus be a barrier to gene flow. Here, we use 13 375 genome-wide single-nucleotide polymorphisms (SNPs) to evaluate genetic population structure and infer dispersal patterns of the Western Grasswren Amytornis textilis textilis (WGW, n = 140) in the Shark Bay region of Western Australia. We found high levels of genetic divergence between subpopulations on the mainland (Hamelin) and narrow peninsula (Peron). In addition, we found evidence of further genetic sub-structuring within the Hamelin subpopulation, with individuals collected from the western and eastern regions of a conservation reserve forming separate genetic clusters. Spatial autocorrelation analysis within each subpopulation revealed significant local-scale genetic structure up to 35 km at Hamelin and 20 km at Peron. In addition, there was evidence of male philopatry in both subpopulations. Our results suggest a narrow strip of land may be acting as a geographical barrier in the WGW, limiting dispersal between a peninsula and mainland subpopulation. In addition, heterogeneous habitat within Hamelin may be restricting dispersal at the local scale. Furthermore, there is evidence to suggest that the limited gene flow is asymmetrical, with directional dispersal occurring from the bounded peninsula subpopulation to the mainland. This study highlights the genetic structure existing within and between some of the few remaining WGW subpopulations, and shows a need to place equal importance on conservation efforts to maintain them in the future

    Sugar-Protein Connectivity Impacts on the Immunogenicity of Site-Selective Salmonella O-Antigen Glycoconjugate Vaccines

    Get PDF
    A series of glycoconjugates with defined connectivity were synthesized to investigate the impact of coupling Salmonella typhimurium O-antigen to different amino acids of CRM197 protein carrier. In particular, two novel methods for site-selective glycan conjugation were developed to obtain conjugates with single attachment site on the protein, based on chemical modification of a disulfide bond and pH-controlled transglutaminase-catalyzed modification of lysine, respectively. Importantly, conjugation at the C186-201 bond resulted in significantly higher anti O-antigen bactericidal antibody titers than coupling to K37/39, and in comparable titers to conjugates bearing a larger number of saccharides. This study demonstrates that the conjugation site plays a role in determining the immunogenicity in mice and one single attachment point may be sufficient to induce high levels of bactericidal antibodies

    Comparing the Effectiveness of Malaria Vector-Control Interventions Through a Mathematical Model

    Get PDF
    Although some malaria-control programs are beginning to combine insecticide-treated nets (ITNs) and indoor residual spraying (IRS), little is known about the effectiveness of such combinations. We use a mathematical model to compare the effectiveness of ITNs and IRS with dichlorodiphenyltrichloroethane (DDT) or bendiocarb, applied singly and in combination, in an epidemiological setting based in Namawala, Tanzania, with Anopheles gambiae as the primary vector. Our model indicates that although both IRS (with DDT) and ITNs provide personal protection, humans with only ITNs are better protected than those with only IRS, and suggests that high coverage of IRS with bendiocarb may interrupt transmission, as can simultaneous high coverage of ITNs and IRS with DDT. When adding a second vector-control intervention, it is more effective to cover the unprotected population first. Although our model includes some assumptions and approximations that remain to be addressed, these findings should be useful for prioritizing and designing future field research

    Computer simulations of the interactions of the (012) and (001) surfaces of jarosite with Al, Cd, Cu2+ and Zn

    Get PDF
    Jarosite is an important mineral on Earth, and possibly on Mars, where it controls the mobility of iron, sulfate and potentially toxic metals. Atomistic simulations have been used to study the incorporation of Al3+, and the M2+ impurities Cd, Cu and Zn, in the (0 1 2) and (0 0 1) surfaces of jarosite. The calculations show that the incorporation of Al on an Fe site is favorable on all surfaces in which terminal Fe ions are exposed, and especially on the (0 0 1) [Fe3(OH)3]6+ surface. Incorporation of Cd, Cu or Zn on a K site balanced by a K vacancy is predicted to stabilize the surfaces, but calculated endothermic solution energies and the high degree of distortion of the surfaces following incorporation suggest that these substitutions will be limited. The calculations also suggest that incorporation of Cd, Cu and Zn on an Fe site balanced by an OH vacancy, or by coupled substitution on both K and Fe sites, is unfavorable, although this might be compensated for by growth of a new layer of jarosite or goethite, as predicted for bulk jarosite. The results of the simulations show that surface structure will exert an influence on uptake of impurities in the order Cu > Cd > Zn, with the most favorable surfaces for incorporation being (0 1 2) [KFe(OH)4]0 and (0 0 1) [Fe3(OH)3]6+
    • …
    corecore