3,692 research outputs found

    Instability thresholds for flexible rotors in hydrodynamic bearings

    Get PDF
    Two types of fixed pad hydrodynamic bearings (multilobe and pressure dam) were considered. Optimum and nonoptimum geometric configurations were tested. The optimum geometric configurations were determined by using a theoretical analysis and then the bearings were constructed for a flexible rotor test rig. It was found that optimizing bearings using this technique produces a 100% or greater increase in rotor stability. It is shown that this increase in rotor stability is carried out in the absence of certain types of instability mechanisms such as aerodynamic crosscoupling. However, the increase in rotor stability should greatly improve rotating machinery performance in the presence of such forces as well

    Dynamics of a flexible rotor in magnetic bearings

    Get PDF
    Discussed is a magnetic bearing which was designed and tested in a flexible rotor both as support bearings and as a vibration controller. The design of the bearing is described and the effect of control circuit bandwidth determined. Both stiffness and damping coefficients were measured and calculated for the bearing with good agreement. The bearings were then placed in a single mass rotor as support bearings and the machine run through two critical speeds. Measurements were made of the vibration response in plain bushings and magnetic bearings. Comparisons were also made of the theoretical calculations with the measured peak unbalance response speeds. Finally, runs were made with the magnetic bearing used as a vibration controller

    Vibration limiting of rotors by feedback control

    Get PDF
    Experimental findings of a three mass rotor with four channels of feedback control are reported. The channels are independently controllable with force being proportional to the velocity and/or instantaneous displacement from equilibrium of the shaft at the noncontacting probe locations (arranged in the vertical and horizontal attitudes near the support bearings). The findings suggest that automatic feedback control of rotors is feasible for limiting certain vibration levels. Control of one end of a rotor does afford some predictable vibration limiting of the rotor at the other end

    Periodic homogenization of a pseudo-parabolic equation via a spatial-temporal decomposition

    Get PDF
    Pseudo-parabolic equations have been used to model unsaturated fluid flow in porous media. In this paper it is shown how a pseudo-parabolic equation can be upscaled when using a spatio-temporal decomposition employed in the Peszyn'ska-Showalter-Yi paper [8]. The spatial-temporal decomposition transforms the pseudo-parabolic equation into a system containing an elliptic partial differential equation and a temporal ordinary differential equation. To strengthen our argument, the pseudo-parabolic equation has been given advection/convection/drift terms. The upscaling is done with the technique of periodic homogenization via two-scale convergence. The well-posedness of the extended pseudo-parabolic equation is shown as well. Moreover, we argue that under certain conditions, a non-local-in-time term arises from the elimination of an unknown.Comment: 6 pages, 0 figure

    Design and test of a magnetic thrust bearing

    Get PDF
    A magnetic thrust bearing can be employed to take thrust loads in rotating machinery. The design and construction of a prototype magnetic thrust bearing for a high load per weight application is described. The theory for the bearing is developed. Fixtures were designed and the bearing was tested for load capacity using a universal testing machine. Various shims were employed to have known gap thicknesses. A comparison of the theory and measured results is presented

    Digital control of magnetic bearings supporting a multimass flexible rotor

    Get PDF
    The characteristics of magnetic bearings used to support a three mass flexible rotor operated at speeds up to 14,000 RPM are discussed. The magnetic components of the bearing are of a type reported in the literature previously, but the earlier analog controls were replaced by digital ones. Analog-to-digital and digital-to-analog converters and digital control software were installed in an AT&T PC. This PC-based digital controller was used to operate one of the magnetic bearings on the test rig. Basic proportional-derivative control was applied to the bearings, and the bearing stiffness and damping characteristics were evaluated. Particular attention is paid to the frequency dependent behavior of the stiffness and damping properties, and comparisons are made between the actual controllers and ideal proportional-derivative control

    Microgravity vibration isolation: An optimal control law for the one-dimensional case

    Get PDF
    Certain experiments contemplated for space platforms must be isolated from the accelerations of the platforms. An optimal active control is developed for microgravity vibration isolation, using constant state feedback gains (identical to those obtained from the Linear Quadratic Regulator (LQR) approach) along with constant feedforward (preview) gains. The quadratic cost function for this control algorithm effectively weights external accelerations of the platform disturbances by a factor proportional to (1/omega)(exp 4). Low frequency accelerations (less than 50 Hz) are attenuated by greater than two orders of magnitude. The control relies on the absolute position and velocity feedback of the experiment and the absolute position and velocity feedforward of the platform, and generally derives the stability robustness characteristics guaranteed by the LQR approach to optimality. The method as derived is extendable to the case in which only the relative positions and velocities and the absolute accelerations of the experiment and space platform are available

    Asymptotic homogenisation in strength and fatigue durability analysis of composites

    Get PDF
    This is the post-print version of the Article. Copyright @ 2003 Kluwer Academic Publishers.Asymptotic homogenisation technique and two-scale convergence is used for analysis of macro-strength and fatigue durability of composites with a periodic structure under cyclic loading. The linear damage accumulation rule is employed in the phenomenological micro-durability conditions (for each component of the composite) under varying cyclic loading. Both local and non-local strength and durability conditions are analysed. The strong convergence of the strength as the structure period tends to zero is proved and its limiting value is estimated.This work was supported under the research grant GR/M24592 from the Engineering and Physical Sciences Research Council, UK

    Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution.

    Full text link

    Effective macroscopic dynamics of stochastic partial differential equations in perforated domains

    Full text link
    An effective macroscopic model for a stochastic microscopic system is derived. The original microscopic system is modeled by a stochastic partial differential equation defined on a domain perforated with small holes or heterogeneities. The homogenized effective model is still a stochastic partial differential equation but defined on a unified domain without holes. The solutions of the microscopic model is shown to converge to those of the effective macroscopic model in probability distribution, as the size of holes diminishes to zero. Moreover, the long time effectivity of the macroscopic system in the sense of \emph{convergence in probability distribution}, and the effectivity of the macroscopic system in the sense of \emph{convergence in energy} are also proved
    corecore