An effective macroscopic model for a stochastic microscopic system is
derived. The original microscopic system is modeled by a stochastic partial
differential equation defined on a domain perforated with small holes or
heterogeneities. The homogenized effective model is still a stochastic partial
differential equation but defined on a unified domain without holes. The
solutions of the microscopic model is shown to converge to those of the
effective macroscopic model in probability distribution, as the size of holes
diminishes to zero. Moreover, the long time effectivity of the macroscopic
system in the sense of \emph{convergence in probability distribution}, and the
effectivity of the macroscopic system in the sense of \emph{convergence in
energy} are also proved