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SUMMARY

Certain experiments contemplated for space platforms must be isolated from the accelera-
tions of the platform. In this paper an optimal active control is developed for microgravity
vibration isolation, using constant state feedback gains (identical to those obtained from the
Linear Quadratic Regulator [LQR| approach) along with constant feedforward (preview) gains.

The quadratic cost function for this control algorithm effectively weights external
accelerations of the platform disturbances by a factor proportional to (1 /w)‘. Low frequency
accelerations (less than 50 Hz) are attenuated by greater than two orders of magnitude. The
control relies on the absolute position and velocity feedback of the experiment and the absolute
position and velocity feedforward of the platform, and generally derives the stability robustness
characteristics guaranteed by the LQR approach to optimality.

The method as derived is extendable to the case in which only the relative positions and
velocities and the absolute accelerations of the experiment and space platform are available.

1. INTRODUCTION

A space platform experiences local, low frequency accelerations (0.01 to 30 Hz) due to
equipment motions and vibrations, and to crew activity (ref. 1). Certain experiments such as

. the growth of isotropic crystals, require an environment in which the accelerations are less than

a few micro-g’s (ref. 2). Such an environment is not presently available on manned space
platforms.

Since the experiment and space platform centers of gravity generally do not coincide, a
means is needed to prevent a free-floating experiment from drifting into its own orbital motion
and into the space platform wall. Additionally, most experiments will require umbilicals of some



sort to provide power, experiment control, coolant flow, communications linkage, and or other
services. Unfortunately, such measures also mean that unwanted platform accelerations will be
transmitted to the experiments. This necessitates experiment isolation. Passive isolators,
however, cannot compensate for umbilical stiffness, nor can they achieve low enough corner
frequencies even if umbilicals are absent. Therefore, it is essential to compensate this environ-
ment with active isolation means.

The problem then becomes to design an active isolation system to minimize these
undesired acceleration transmission, while achieving adequate stability margins and system
roubustness for the controller design. In addition, spatial and control energy limitations must
also be accommodated. This paper will explore the optimal control problem of a microgravity
experiment isolation from the low frequency range of disturbances experienced on the Shuttle
and in the future Space Station Freedom Microgravity Modules.

2. MATHEMATICAL MODEL
The general problem has three translational and three rotational rigid body degrees of
freedom. For simplicity, however, this analysis will consider only the one-dimensional problem.
The general problem could be treated in an analogous manner. Let the experiment be modeled
as & mass m, with position x(t). Assume that the space platform has position d(t), and that
umbilicals with stiffness k and damping ¢ connect the experiment and space platform. Suppose
further that a magnetic actuator applies a control force proportional to the applied current i(t),

with proportionality constant a. Such a model is shown in figure 1. B

The system equation of motion is

mx +c(x - d) +k(x -d) +ai 0 (1)

Division by m and rearrangement yields

= -Kx-d) -5 (x-d) - % (2)

In state space notation this becomes
i = A& = hu -+ ‘i-. (3)

where
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The objective is to minimize the acceleration Z(t).

3. OPTIMAL CONTROL PROBLEM

The optimal control problem is that of determining the control current u(t) =i which
minimizes a suitable performance index

J = J(x,u,t) | (4)

for the system described by equation (3) subject to the state variable conditions

x(0) = x, (5a)
M x() = 0 (sb)

Another reasonable assumption is that f(t) is bounded, and it will be found mathematically
advantageous (and only minimally restrictive) to assume that f(t) is also a dwindling function:

lim
- 5
o w f8) =0 (5¢)
A quadratic performance index
J = ; I [gTWIK + wau?]dt | (6)
0

has been chosen, as one that lends itself well to the variational approach to optimal controls,
since an analytical solution is desired. The upper limit of the definite integral has been selected



8o as to yield a time-invariant controller. Here W, is a square 2 by 2 constant weighing matrix
while matrix w, is a weighing constant.

Although, W, could be a full 2 by 2 matrix, for this problem a diagonal form has been
employed for the sake of simplicity.

w 0
N ' (7
0 wyp

The performance index consequently reduces to

I = I [wlax: * wlbx: M W3u2]dt, (8)
0

| e

so that each state is weighted independently.

If sinusoidal motion of the experiment is considered, so that

x(t) = Bsin wt

and %(t) = «? x(t), the cost function can be expressed in terms of the acceleration and control
as

J = !I .E + E B?x? +w3u2 dt (9)
2, || ot o7

It is apparent that this performance index convieniently weights accelerations at low frequencies
much more than at higher frequencies.

4. SOLUTION

Finding the optimal control to minimize equation (4) is a variational problem of La-
grange, for which the initial steps of the solution are well-known (e.g., Elbert (ref. 3)). The
variational approach is outlined below, following which the complications added by the non-
homogeneous term {(t) will be addressed. Current optimal controls texts either assume that
f(t) will be addressed. Current optimal controls texts either assume that f(t) = 0 (e.g., (ref. 3),
p. 262) or require that it have a restricted range space (e.g., (ref. 6), p. 238). The solution that
follows provides an analytical optimal control without imposing such restrictions.



The argument of the cost function J from equation (4) is augmented by the Lagrange
multiplier A times the system equation of motion equation (3) where

(10)

The result J can be expressed as

j= j"H dt (11)
0

where the Hamiltonian H is

i -l (ETwli + Wauz) + :\.T("_‘. - Ax - bu - i) : (12)
2
It is desired to obtain an optimal solution u = u’ which minimizes J.
The first variation of J(x,u,x) is
63 = [|Mex + s + M sslas
A
which is set equal to zero to minimize J. However, integrating by parts,
| [?‘__‘ag]m = -[ AT oxat
0 aﬁ 0 ’
so that the above expression for 6J becomes
6 = H 5Ty + Mgulas =0 (13)
2 (2 Y

Both 6x and éu are arbitrary variations, so =0 only if



H ;T (14a)
&— A4
Mo (14b)
du
The conditions given by equation (5) still apply.
Sclving eqs. (14a) and (14b) yields
A=Wx - A (15a)
* 1 1
ut = Lp¥a (15b)
W3
Temporarily eliminating ' produces the result
kil oalxl )f (16)
A Al (o
where
A | LT
W3
l
| -
i
w, | -AT

I equation (16) is now solved for A intermsof x and of f, equation (15b) will then furnish
an expression for the optimal control u . -

As noted before, optimal control texts generally treat the homogenous problem (where
f(t) = 0), but they do not provide an analytical solution to the nonhomogeneous system de-
scribed by equations (5) and (16). Salukvadze has treated the nonhomogeneous problem (refs. 4
and 5), but this difficult treatment seems largely to have remai: -1 either uncomprehended or
under-appreciated. This method is especially well suited to low-frequency disturbance rejection,
and has been applied below to the present problem.



The homogeneous solution to equation (15), where f=0, is

X
X[ At -0 (17)
Al 2

The four eigenvalues of A may be found to be, in ascending order of real parts,

, 1/2
-8y + (B, - 48;)')? (182)
b = - :
| 2
- 2 11/2
-8, - (B} - 48"/ (18b)
By = =
| 2
By = ~Hg (18d)
where B, and f, are defined as follows:
2 .
g =k T (19a):
m 2 mwg
and
2 azwl k
By = B —4 2 X (19b)
2 2

mwg m

The eigenvectors of A corresponding to the respective eigenvalues p; may be chosen to be



Fx
’12 (79 + #y) (20a)
< a
B, - T, N +Z}772 Pyt
Pk T3k 73)
T+ (13 + mdey
. 73 /
where 7,, 7,, 73, and 1, are defined below:
k
7 = — (20b)
m
c
T2 = — (20c)
m
2 -
a
3 = - (20(1)
m°w,
74 = wla (208)
Using equations (18) through (20) with (17) the solution to the homogeneous system is
nyt #at =pyt -pgt
ci€e + Cy€ + C.€ + C,€
x| |7 Py 2° By 3By By (21)
A Byt Bat -t -pyt
2n cet B, * o ’p_zg + cge ! By, * e ’242
Ekx
with p, = . [’ k =1,... 4 and where c,;,..., ¢, are arbitrary constants.
k2

Application of the variation of parameters method with terminal conditions (egs. (5b) -
and (c)) leads to the general solution of the nonhomogeneous system, with two constants of
integration yet undermined.



If the two constants of integration are eliminated by solving for A in terms of x and f,
the general solutions for A; and A, become:

Ap = &%y + {gxg + fae—plt + f4e-M2t (22a)

Ay = €% *+ CoXg * f'r‘*-”lt M fse-"zt (22b)

in which the §’s are functions of the eigenvalues and eigenvectors of A, and of the disturb-
ances f(t).

The Solution Form

Using the fact that

u'(t) = L2aTb  [cf. eq. (isb)] v (23)

W3

the optimal control is found to be

ut(t) = nyx; + Myxp + r)ae"”lt J e fy(t)dt + n4é-"2t J' ' fa(t)dt (24a)
where
-m] k 2
ny = __m[__ _ I‘x"z] (24b)
a \m
N = _-E[.i o ThR “2] (24c)
a \m
s = m[ ) ][,,g e Sy v 1] (244)
[+ ﬂl - ﬂz m m
Ny = -T[ 1 ][p: + ipz + 3.] (24e)
alpy - By m m

(It should be noted that the feedback gains n, and 7, are those which would result from
-- applying standard LQR theory to the homogeneous system equation x = Ax + bu). In.



equations (24a) to (f) u,, p, are the eigenvalues of A with negative real parts, (see eqs. (18a)
and (b))

f) = Xa+ 24 (241)
m m

By repeated application of the method of integration by parts, the control may be re-expressed
in terms of an infinite sum:

r (1) re(r)
= ()7 = (1))
u(t) = myx; + myxp + 03 2 e, Y - (25)
=0 ”r+l =0 “r+l
1 2

Rewriting f, in terms of d and c'l, the control function becomes

u*(t) = mpx(t) + mp R(t) + [E [ﬁ . 31]] d(®)

mig, H;

1

-
.

i n n i n 7 i
A Sl [0l KERLL) PYRTULY IRCERNRL | B OO 2
i=1 ml 1 i ml i+1 i+1 ( )
Hy o My E Py
n-1c|m N4 (n) .
+|(-1)" == + — || d"™/(t) + higher order terms
m| n n
By e

This may be written in more appealing form as

u'(t) = cyx(t) + ¢, X(t) + cgod(t) + cqyd(t) + higher order terms (27)

in which the constant coefficients ¢, c,. c4q, and c¢q, may be defined from equations (24)
and (26). Clearly, if the infinite sums converge rapidly enough, the optimal control can be
approximated by

(28)

u*(1) = cpx(t) + cyx(t) + cgod(t) + cqud(t)

" For very low frequency disturbances therhiwgilrler order terms in Vléqllaﬂttibﬁf(iééi):aré negiigibly small,
and the control (eq. (28)) closely approximates the optimal. If, in fact, the second- and

10



higher-order derivatives of d(t) are identically zero, the approximation is exact. It can be
shown that for the critically damped closed loop system the eigenvalues are real and equal, and
the convergence is more rapid than for the overdamped system. Further, as the closed-loop
system eigenvalues become more negative the convergence speed goes up as well.

5. CONTROL EVALUATION

Physical Realizability of the Control

The control, equation (25), is physically realizable, if the states and sufficient derivatives
of d(t) are accessible (or estimable by an observer), and if the higher order terms are negligible.
It is not necessary that the eigenvalues be real, although the proof of this requires a more
general linear algebra or state-transition-matrix approach.

If values are assigned to the system parameters, associated controller gains can be
evaluated. Suppose that m = 100 Ibm, k = 0.3 1bf/ft, ¢ = 0 Ibf-sec/ft, and o« = 10 1bf/ Amp.
With w, arbitrarily set at 1 and w,, varied, associated integer values of w,  can be found
below which the eigenvalues u, and p, will always be real. Such values are tabulated in
table I. Stated otherwise, the tabulated values of the weights w;, and w,;, are those integer
values (for the sake of simplicity) for which the closed loop system is closest to being critically
damped without being undamped. Corresponding controller feedback and feedforward gains (for
the first five derivatives) are also included.

The states x(t) and x(t) and the derivatives dOqe), d(l)(t), and d®)(t) are clearly
available for an Earth-based system. However, in space, the only absolute measurements which
can be directly available are %(t) and d(t), from which x(t), d(t) and x(t), d(t) are obtainable
only by successive integration(s). Rearrangements of (28) into

uw(t) = (cp + cgo)x(t) + (cy + ca))X(t) - cqolx(t) = ()] = cqy[X(t) -d(t)] (@)

or

0'(8) = (c, + cgold(t) * (cy + cg)d(t) + cplx(t) = d(8)] + e,[X(t) - d(¥)] (30)

obviates the need for one accelerometer, but one accelerometer plus two integrations remain
necessary for either the platform or the experiment. Since [x(t) - d(t)] (or one of its integrals)
has not been weighted in the performance index J, experiment drift will be a problem that must
be corrected either by another control loop or by a change of system states. The latter could be
accomplished by incorporating an accelerometer attached to the experiment into the state equa-
tion. Alternatively, one could append an integrator to the plant, include the current i(t) as a
third state, and optimize the control di/dt. But for the sake of simplicity (i.e., fewer states) the
former has been assumed (without development) in this paper.

The higher order terms of the control (eqs. (25) and (26)) can be neglected, for low.
frequencies, if the eigenvalues u, and u, are of sufficient modulus. These eigenvalues, in turn,

11



are under the control of the designer, determined by chosen weights w, , w,y, and w, Itis
apparent from equation (25) that u (t) essentially reduces to two alternating power series. For

a sinusoidal disturbance of frequency w the series form of the control converges for |w/p;| < 1(i = 1,2).

- 14
It can be shown that each alternating power series converges like Y (-l)'[.‘f]z . With “low”
r=0 B

frequency disturbances (i.e., small relative to system closed loop eigenvalues) a control formed
by series truncation very closely approximates the optimal.

For example, suppose that the normalized frequencies |w/p;| for sinusoidal disturbances

are less than 1/5, and that only the feedforward control terms cgod(t) and cdla(t) are included
with the feedback terms. Even so, the feedforward portion of the truncated control, at any time
t, will be a current that is still within 4 percent (i.e., (1/5)2) of the feedforward portion of the
actual optimal. If the normalized frequencies are below 1 /10, this approximation error will be
less than 1 percent. Table | shows that the gains cy; of higher order derivatives d(’)(t) (see
equation (26) for the algebraic representations) are, in fact, quite small.

In some circumstances there may be design constraints which prevent the designer from
selecting weights that lead to sufficiently rapid convergence. However, since convergence occurs

rapidly even for eigenvalues of relatively small modulus (jw/u;| < 1/3), in a great many cases
the designer will have much latitude in choice of weights. For “low” frequency disturbances, in
these cases, a control which includes only one or two feedforward terms will be “close” to the
optimal. These frequencies be well attenuated.

Higher frequency disturbances will also be well attenuated, provided the input-to-output
transfer functions(s) are at least strictly proper in the Laplace Transform variables. This will
not be the case for the present problem if more than three feedforward gains (cyq, €4qs Cq2) 2r€
included in the control. Practically, this means that only proportional and first-derivative feed-
forward (equation (25) with r = 0,1 or equation (26) with n = 2) should be added to the
feedback control terms. As will be seen shortly, however, adding even the proportional
feedforward terms(s) can dramatically improve the disturbance rejection over that afforded by

LQR feedback alone.

Transfer Function and Block Diagram

Neglecting the higher order terms, the transfer function between input and output
accelerations or displacements is

c k _.
$?X(s) _ X(s) _ (Z ‘"] [5 do]' , (31)

R
ZS+;+CVS+;+CP

and a block diagram of the controlled system can be drawn as in figure 2.

12



Control Stability, Stability Robustness, and General Robustness

Since the control feedback gains are the same as those obtained by solution of the
standard Linear Quadratic Regulator (LQR) problem, the closed loop system is stable and
enjoys the stability robustness characteristics guaranteed by the (LQR) approach to optimality,
viz., a minimum of 60° phase margin, infinite positive gain margin, and 6 dB negative gain
margin (ref. 6). Additionally, numerical checks indicate that it enjoys substantial insensitivity,
or general robustness to uncertainties in k, ¢, and m, as indicated by table II and figures 3 to
10. By comparing the Bode plots of figures 3, 5, 7, and 9 (corresponding to controls using both
LQR feedback (F/B) and proportional feedforward (F/F) with those of figures 4, 6, 8, and 10,
respectively (corresponding to controls using LQR F /B only), one can see that adding feed-
forward substantially improves disturbance rejection at low frequencies. For example a
comparison of figures 3 with figure 4 indicates that the optimal control method described above
can lead to acceleration reductions of greater than four orders of magnitude for all frequencies.
This reduction is more than two orders of magnitude below that afforded by LQR feedback
alone at the lower frequencies, i.e., those most heavily weighted in the performance index.

The order of the reduction is eventually limited by control cost, of course, probably in
terms either of actuator-related limitations (such as heat removal or force generation require-
ments) or of power limitations (especially in a space station environment). The control also
leads to displacement reductions of the same magnitude, limited in this case by actuator-stroke
or spatial limitations. Providing a unit of transmissibility for very low frequencies and/or
weighting [(x - d) in the performance index J, would be steps toward addressing these latter
limitations.

Computational Aspects "

A significant amount of algebra was required to solve the two-state problem of this paper,
and the labor involved increases dramatically with each additional state. However, such )
symbolic manipulators as MACSYMA may be used to ease the workload if a symbolic solution is
desired. Further, well-known numerical methods exist (i.e., Potter’s method (ref. 7) or Laub’s
method (ref. 8)) for solving the homogeneous system. These can readily provide the feedback
gains in numerical form, even for problems with many states. It might be anticipated, then,
that a numerical method also exists for finding the desired feedforward gains.

Such is the case, as will be shown in a later paper.

6. CONCLUSIONS

This paper has applied an existing method for obtaining an optimal control to the
microgravity platforin isolation problem, for which the disturbances to be rejected are low-

frequency accelerations. The system was assumed to be representable in the form X = Ax + bu + {,

with quadratic cost function J = 1 [ (ETWﬁ + w3u2)dt, and diagonal weighing matrix W,.
2 -
0
The resultant control law was found to be simple, stable, robust, and physically realizable.
Further it was shown to have excellent acceleration- and displacement-attenuation characteris-

tics, and to be frequency-weighted toward the low end of the acceleration spectrum.

13



The method is extendable to the case for which only relative positions and velocities, and
absolute accelerations, are available; and can be applied so as to weight relative displacements in
the performance index.

The approach as presented is algebraically intensive, but symbolic manipulators can be
used to ease the algebraic labors. Further, since the method produces feedback gains identical to
those obtained by the LQR approach to optimality, numerical computation of those gains is
easily accomplished, even for large systems. The feedforward gaius can be found numerically
with comparable ease.
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TABLE II. - CLOSED LOOP TRANSFER FUNCTIONS FOR SYSTEM WITH
DESIGN PARAMETER VALUES

[k = 0.3, ¢ = 0.00622, and m = 100; G1, G3, G5, and G7 include both LQR F/B and
proportional F/F; G2, G4, G6, and G8 include LQR F/B alone, Weighting parameters used
were, w, = 258, w,, = 10, w, = 1 (table n.] '

System parameter

Closed loop transfer function

82X (s)
’ 2
X 1bf c Ibf - sec m(lbm) 8°D(s)
ft ft
0.3 : co.oo(())cslzt;) 100 Gis) = 0.0000622s + 0.0001
= \uU. (1]
0.31056s% + 4.4675s + 16.0624
0.3 0.000622 100 G2(s) - 0.0000622s + 0.0300
' 0.31056s% + 4.4675s + 16.0624
0.45 0.000622 100 G3(s) = 0.0000622s + 0.0151
0.31056s% + 4.4675s + 16.0774
G _ 0.0000622s + 0.0450
0.45 0.000622 100 4(s) = .
0.31056s2 + 4.4675s + 16.0774
0.3 0.00622 100 G5(s) = 0.000622s + 0.0001
0.31056s8% + 4.4680s + 16.0624 -
0.3 0.00622 100 G6(s) = 0.000622s + 0.0300
0.31056s% + 4.4680s + 16.0624
0.45 0.00622 90 G7(s) = 0.000622s + 0.0151
0.27950s% + 4.4680s + 16.0774
0.45 0.00622 90 G8(s) - 0.000622s + 0.0450

0.27950s% + 4.4680s + 16.0774
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