18 research outputs found

    TDP-43 oligomerization and RNA binding are codependent but their loss elicits distinct pathologies

    Full text link
    Aggregation of the RNA-binding protein TDP-43 is the main common neuropathological feature of TDP-43 proteinopathies. In physiological conditions, TDP-43 is predominantly nuclear and contained in biomolecular condensates formed via liquid-liquid phase separation (LLPS). However, in disease, TDP-43 is depleted from these compartments and forms cytoplasmic or, sometimes, intranuclear inclusions. How TDP-43 transitions from physiological to pathological states remains poorly understood. Here, we show that self-oligomerization and RNA binding cooperatively govern TDP-43 stability, functionality, LLPS and cellular localization. Importantly, our data reveal that TDP-43 oligomerization is connected to, and conformationally modulated by, RNA binding. Mimicking the impaired proteasomal activity observed in patients, we found that TDP-43 forms nuclear aggregates via LLPS and cytoplasmic aggregates via aggresome formation. The favored aggregation pathway depended on the TDP-43 state –monomeric/oligomeric, RNA-bound/-unbound– and the subcellular environment –nucleus/cytoplasm. Our work unravels the origins of heterogeneous pathological species occurring in TDP-43 proteinopathies

    Loss of TDP-43 oligomerization or RNA binding elicits distinct aggregation patterns

    Full text link
    Aggregation of the RNA-binding protein TAR DNA-binding protein 43 (TDP-43) is the key neuropathological feature of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). In physiological conditions, TDP-43 is predominantly nuclear, forms oligomers, and is contained in biomolecular condensates assembled by liquid-liquid phase separation (LLPS). In disease, TDP-43 forms cytoplasmic or intranuclear inclusions. How TDP-43 transitions from physiological to pathological states remains poorly understood. Using a variety of cellular systems to express structure-based TDP-43 variants, including human neurons and cell lines with near-physiological expression levels, we show that oligomerization and RNA binding govern TDP-43 stability, splicing functionality, LLPS, and subcellular localization. Importantly, our data reveal that TDP-43 oligomerization is modulated by RNA binding. By mimicking the impaired proteasomal activity observed in ALS/FTLD patients, we found that monomeric TDP-43 forms inclusions in the cytoplasm, whereas its RNA binding-deficient counterpart aggregated in the nucleus. These differentially localized aggregates emerged via distinct pathways: LLPS-driven aggregation in the nucleus and aggresome-dependent inclusion formation in the cytoplasm. Therefore, our work unravels the origins of heterogeneous pathological species reminiscent of those occurring in TDP-43 proteinopathy patients

    rbFOX1/MBNL1 competition for CCUG RNA repeats binding contributes to myotonic dystrophy type 1/type 2 differences

    Get PDF
    Myotonic dystrophy type 1 and type 2 (DM1, DM2) are caused by expansions of CTG and CCTG repeats, respectively. RNAs containing expanded CUG or CCUG repeats interfere with the metabolism of other RNAs through titration of the Muscleblind-like (MBNL) RNA binding proteins. DM2 follows a more favorable clinical course than DM1, suggesting that specific modifiers may modulate DM severity. Here, we report that the rbFOX1 RNA binding protein binds to expanded CCUG RNA repeats, but not to expanded CUG RNA repeats. Interestingly, rbFOX1 competes with MBNL1 for binding to CCUG expanded repeats and overexpression of rbFOX1 partly releases MBNL1 from sequestration within CCUG RNA foci in DM2 muscle cells. Furthermore, expression of rbFOX1 corrects alternative splicing alterations and rescues muscle atrophy, climbing and flying defects caused by expression of expanded CCUG repeats in a Drosophila model of DM2.Peer reviewe

    Figure 5A SC 2D 1H-15N HSQC spectra

    No full text
    Excel spreadsheet containing values used for comparison of HSQC spectra of SRSF1deltaRS before and after addition of SL

    Figure 4E Chemical shift data

    No full text
    Spreadsheet of values for chemical shift perturbations of SRSF1 methyl groups in the presence of U1 snRNP, ssRNA or U1 snRNA SL

    Figure 5D SC SMN1 suppression of mutant 5'SS by U1 snRNAs with SL3 mutations

    No full text
    Quantitative data for levels of SMN1 exon 7 inclusion, used for grap

    Modularity and determinants of a (bi-)polarization control system from free-living and obligate intracellular bacteria

    No full text
    Although free-living and obligate intracellular bacteria are both polarized it is unclear whether the underlying polarization mechanisms and effector proteins are conserved. Here we dissect at the cytological, functional and structural level a conserved polarization module from the free living alpha-proteobacterium Caulobacter crescentus and an orthologous system from an obligate intracellular (rickettsial) pathogen. The NMR solution structure of the zinc-finger (ZnR) domain from the bifunctional and bipolar ZitP pilus assembly/motility regulator revealed conserved interaction determinants for PopZ, a bipolar matrix protein that anchors the ParB centromere-binding protein and other regulatory factors at the poles. We show that ZitP regulates cytokinesis and the localization of ParB and PopZ, targeting PopZ independently of the previously known binding sites for its client proteins. Through heterologous localization assays with rickettsial ZitP and PopZ orthologs, we document the shared ancestries, activities and structural determinants of a (bi-)polarization system encoded in free-living and obligate intracellular alpha-proteobacteria

    Systematic Identification of Protein–Metabolite Interactions in Complex Metabolite Mixtures by Ligand-Detected Nuclear Magnetic Resonance Spectroscopy

    No full text
    Protein–metabolite interactions play a vital role in the regulation of numerous cellular processes. Consequently, identifying such interactions is a key prerequisite for understanding cellular regulation. However, the noncovalent nature of the binding between proteins and metabolites has so far hampered the development of methods for systematically mapping protein–metabolite interactions. The few available, largely mass spectrometry-based, approaches are restricted to specific metabolite classes, such as lipids. In this study, we address this issue and show the potential of ligand-detected nuclear magnetic resonance (NMR) spectroscopy, which is routinely used in drug development, to systematically identify protein–metabolite interactions. As a proof of concept, we selected four well-characterized bacterial and mammalian proteins (AroG, Eno, PfkA, and bovine serum albumin) and identified metabolite binders in complex mixes of up to 33 metabolites. Ligand-detected NMR captured all of the reported protein–metabolite interactions, spanning a full range of physiologically relevant <i>K</i><sub>d</sub> values (low micromolar to low millimolar). We also detected a number of novel interactions, such as promiscuous binding of the negatively charged metabolites citrate, AMP, and ATP, as well as binding of aromatic amino acids to AroG protein. Using <i>in vitro</i> enzyme activity assays, we assessed the functional relevance of these novel interactions in the case of AroG and show that l-tryptophan, l-tyrosine, and l-histidine act as novel inhibitors of AroG activity. Thus, we conclude that ligand-detected NMR is suitable for the systematic identification of functionally relevant protein–metabolite interactions

    Structural flexibility enables alternative maturation, ARGONAUTE sorting and activities of miR168, a global gene silencing regulator in plants

    No full text
    In eukaryotes, the RNase-III Dicer often produces length/sequence microRNA (miRNA) variants, called "isomiRs", owing to intrinsic structural/sequence determinants of the miRNA precursors (pre-miRNAs). In this study, we combined biophysics, genetics and biochemistry approaches to study Arabidopsis miR168, the key feedback regulator of central plant silencing effector protein ARGONAUTE1 (AGO1). We identified a motif conserved among plant pre-miR168 orthologs, which enables flexible internal base-pairing underlying at least three metastable structural configurations. These configurations promote alternative, accurate Dicer cleavage events generating length and structural isomiR168 variants with distinctive AGO sorting properties and modes of action. Among these isomiR168s, a duplex with a 22-nt guide strand exhibits strikingly preferential affinity for AGO10, the closest AGO1 paralog. The 22-nt miR168-AGO10 complex antagonizes AGO1 accumulation in part via "transitive RNAi", a silencing-amplification process, to maintain appropriate AGO1 cellular homeostasis. Furthermore, we found that the tombusviral P19 silencing-suppressor protein displays markedly weaker affinity for the 22-nt form among its isomiR168 cargoes, thereby promoting AGO10-directed suppression of AGO1-mediated antiviral silencing. Taken together, these findings indicate that structural flexibility, a previously overlooked property of pre-miRNAs, considerably increases the versatility and regulatory potential of individual MIRNA genes, and that some pathogens might have evolved the capacity or mechanisms to usurp this property

    Structural basis of siRNA recognition by TRBP double-stranded RNA binding domains

    Full text link
    The accurate cleavage of pre-micro(mi)RNAs by Dicer and mi/siRNA guide strand selection are important steps in forming the RNA-induced silencing complex (RISC). The role of Dicer binding partner TRBP in these processes remains poorly understood. Here, we solved the solution structure of the two N-terminal dsRNA binding domains (dsRBDs) of TRBP in complex with a functionally asymmetric siRNA using NMR, EPR, and single-molecule spectroscopy. We find that siRNA recognition by the dsRBDs is not sequence-specific but rather depends on the RNA shape. The two dsRBDs can swap their binding sites, giving rise to two equally populated, pseudo-symmetrical complexes, showing that TRBP is not a primary sensor of siRNA asymmetry. Using our structure to model a Dicer-TRBP-siRNA ternary complex, we show that TRBP's dsRBDs and Dicer's RNase III domains bind a canonical 19 base pair siRNA on opposite sides, supporting a mechanism whereby TRBP influences Dicer-mediated cleavage accuracy by binding the dsRNA region of the pre-miRNA during Dicer cleavage
    corecore