187 research outputs found

    Exploring marine ecosystems with elementary school Portuguese children: inquiry-based project activities focused on ‘real-life’ contexts

    Get PDF
    The purpose of the study was to investigate how young students engage in an inquirybased project driven by real-life contexts. Elementary school children were engaged in a small inquiry project centred on marine biodiversity and species adaptations. All activities included the exploration of an out-of-school setting as a learning context. A total of 49 students and 2 teachers were involved in the activities. The research methods included observation, document analysis and content analysis of the answers to a questionnaire and an interview. The results revealed that most of the students acquired scientific knowledge related to biological diversity and adaptations to habitat. Moreover, students progressively demonstrate greater autonomy, argumentative ability and decision-making. One implication of the present study is that elementary science curriculum could be better managed with inquiry projectbased activities that explore different types of resources and out-of-school settings.info:eu-repo/semantics/publishedVersio

    Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.

    Get PDF
    Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction

    Contributing to food security in urban areas: differences between urban agriculture and peri-urban agriculture in the Global North

    Get PDF

    Protocol for a randomized controlled study of Iyengar yoga for youth with irritable bowel syndrome

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Irritable bowel syndrome affects as many as 14% of high school-aged students. Symptoms include discomfort in the abdomen, along with diarrhea and/or constipation and other gastroenterological symptoms that can significantly impact quality of life and daily functioning. Emotional stress appears to exacerbate irritable bowel syndrome symptoms suggesting that mind-body interventions reducing arousal may prove beneficial. For many sufferers, symptoms can be traced to childhood and adolescence, making the early manifestation of irritable bowel syndrome important to understand. The current study will focus on young people aged 14-26 years with irritable bowel syndrome. The study will test the potential benefits of Iyengar yoga on clinical symptoms, psychospiritual functioning and visceral sensitivity. Yoga is thought to bring physical, psychological and spiritual benefits to practitioners and has been associated with reduced stress and pain. Through its focus on restoration and use of props, Iyengar yoga is especially designed to decrease arousal and promote psychospiritual resources in physically compromised individuals. An extensive and standardized teacher-training program support Iyengar yoga's reliability and safety. It is hypothesized that yoga will be feasible with less than 20% attrition; and the yoga group will demonstrate significantly improved outcomes compared to controls, with physiological and psychospiritual mechanisms contributing to improvements.</p> <p>Methods/Design</p> <p>Sixty irritable bowel syndrome patients aged 14-26 will be randomly assigned to a standardized 6-week twice weekly Iyengar yoga group-based program or a wait-list usual care control group. The groups will be compared on the primary clinical outcomes of irritable bowel syndrome symptoms, quality of life and global improvement at post-treatment and 2-month follow-up. Secondary outcomes will include visceral pain sensitivity assessed with a standardized laboratory task (water load task), functional disability and psychospiritual variables including catastrophizing, self-efficacy, mood, acceptance and mindfulness. Mechanisms of action involved in the proposed beneficial effects of yoga upon clinical outcomes will be explored, and include the mediating effects of visceral sensitivity, increased psychospiritual resources, regulated autonomic nervous system responses and regulated hormonal stress response assessed via salivary cortisol.</p> <p>Trial registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01107977">NCT01107977</a>.</p

    Accelerating The Convergence Of The Back-propagation Method

    No full text
    The utility of the back-propagation method in establishing suitable weights in a distributed adaptive network has been demonstrated repeatedly. Unfortunately, in many applications, the number of iterations required before convergence can be large. Modifications to the back-propagation algorithm described by Rumelhart et al. (1986) can greatly accelerate convergence. The modifications consist of three changes:1) instead of updating the network weights after each pattern is presented to the network, the network is updated only after the entire repertoire of patterns to be learned has been presented to the network, at which time the algebraic sums of all the weight changes are applied:2) instead of keeping η, the learning rate (i.e., the multiplier on the step size) constant, it is varied dynamically so that the algorithm utilizes a near-optimum η, as determined by the local optimization topography; and 3) the momentum factor α is set to zero when, as signified by a failure of a step to reduce the total error, the information inherent in prior steps is more likely to be misleading than beneficial. Only after the network takes a useful step, i.e., one that reduces the total error, does α again assume a non-zero value. Considering the selection of weights in neural nets as a problem in classical nonlinear optimization theory, the rationale for algorithms seeking only those weights that produce the globally minimum error is reviewed and rejected. © 1988 Springer-Verlag

    Pattern-recognition By An Artificial Network Derived From Biologic Neuronal Systems

    No full text
    A novel artificial neural network, derived from neurobiological observations, is described and examples of its performance are presented. This DYnamically STable Associative Learning (DYSTAL) network associatively learns both correlations and anticorrelations, and can be configured to classify or restore patterns with only a change in the number of output units. DYSTAL exhibits some particularly desirable properties: computational effort scales linearly with the number of connections, i.e., it is 0(N) in complexity; performance of the network is stable with respect to network parameters over wide ranges of their values and over the size of the input field; storage of a very large number of patterns is possible; patterns need not be orthogonal; network connections are not restricted to multi-layer feed-forward or any other specific structure; and, for a known set of deterministic input patterns, the network weights can be computed, a priori, in closed form. The network has been associatively trained to perform the XOR function as well as other classification tasks. The network has also been trained to restore patterns obscured by binary or analog noise. Neither global nor local feedback connections are required during learning; hence the network is particularly suitable for hardware (VLSI) implementation. © 1990 Springer-Verlag
    • 

    corecore