11 research outputs found

    NEDDylation is essential for Kaposi's sarcoma-associated herpesvirus latency and lytic reactivation and represents a novel anti-KSHV target.

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), which are aggressive malignancies associated with immunocompromised patients. For many non-viral malignancies, therapeutically targeting the ubiquitin proteasome system (UPS) has been successful. Likewise, laboratory studies have demonstrated that inhibition of the UPS might provide a promising avenue for the treatment of KSHV-associated diseases. The largest class of E3 ubiquitin ligases are the cullin-RING ligases (CRLs) that are activated by an additional ubiquitin-like protein, NEDD8. We show that pharmacological inhibition of NEDDylation (using the small molecule inhibitor MLN4924) is cytotoxic to PEL cells by inhibiting NF-ÎşB. We also show that CRL4B is a novel regulator of latency as its inhibition reactivated lytic gene expression. Furthermore, we uncovered a requirement for NEDDylation during the reactivation of the KSHV lytic cycle. Intriguingly, inhibition prevented viral DNA replication but not lytic cycle-associated gene expression, highlighting a novel mechanism that uncouples these two features of KSHV biology. Mechanistically, we show that MLN4924 treatment precluded the recruitment of the viral pre-replication complex to the origin of lytic DNA replication (OriLyt). These new findings have revealed novel mechanisms that regulate KSHV latency and reactivation. Moreover, they demonstrate that inhibition of NEDDylation represents a novel approach for the treatment of KSHV-associated malignancies

    The Inflammatory Kinase MAP4K4 Promotes Reactivation of Kaposi's Sarcoma Herpesvirus and Enhances the Invasiveness of Infected Endothelial Cells

    Get PDF
    Kaposi's sarcoma (KS) is a mesenchymal tumour, which is caused by Kaposi's sarcoma herpesvirus (KSHV) and develops under inflammatory conditions. KSHV-infected endothelial spindle cells, the neoplastic cells in KS, show increased invasiveness, attributed to the elevated expression of metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). The majority of these spindle cells harbour latent KSHV genomes, while a minority undergoes lytic reactivation with subsequent production of new virions and viral or cellular chemo- and cytokines, which may promote tumour invasion and dissemination. In order to better understand KSHV pathogenesis, we investigated cellular mechanisms underlying the lytic reactivation of KSHV. Using a combination of small molecule library screening and siRNA silencing we found a STE20 kinase family member, MAP4K4, to be involved in KSHV reactivation from latency and to contribute to the invasive phenotype of KSHV-infected endothelial cells by regulating COX-2, MMP-7, and MMP-13 expression. This kinase is also highly expressed in KS spindle cells in vivo. These findings suggest that MAP4K4, a known mediator of inflammation, is involved in KS aetiology by regulating KSHV lytic reactivation, expression of MMPs and COX-2, and, thereby modulating invasiveness of KSHV-infected endothelial cells. © 2013 Haas et al

    Labortests zum Nachweis einer SARS-CoV-2-Infektion: Grundprinzipien und Beispiele

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has circulated throughout the world causing the worst pandemic since 1918. All efforts have been marshalled towards testing different treatment approaches, obtaining clinical and epidemiological information, developing suitable diagnostic tests, and developing new vaccines. New ribonucleic acid (RNA)-based and viral vector-based vaccines have been developed and licensed under emergency use in many countries; however, there is a huge demand for vaccines, and it will take some time before a sufficient number of people are vaccinated to stop the circulation of the virus. Therefore, the proper diagnosis and identification of infected individuals are crucial for the isolation and treatment of these patients and tracing of their contacts. Many diagnostic tests and diag-nostic kits have been developed in a relatively short time. This review summarizes the principles of the available laboratory assays that are in use for the detection of SARS-CoV-2 RNA, antigens, or antibodies.Das Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), das sich weltweit ausgebreitet hat, ist für eine der größten Pandemien seit 1918 verantwortlich. Seit Beginn der Pandemie laufen weltweit zahlreiche klinische und epidemiologische Studien, um mögliche effektive Behandlungsansätze zu testen und geeignete diagnostische Testverfahren zu entwickeln. Obwohl in einigen Ländern bereits einige RNA- und Vektorimpfstoffe gegen das Virus entwickelt und zugelassen wurden, ist die Nachfrage nach Impfstoffen in vielen Ländern immer noch groß. Aus diesem Grund und bis eine ausreichende Zahl von Menschen weltweit geimpft ist, bleibt eine schnelle Diagnose die entscheidende Maßnahme, um infizierte Personen zu identifizieren und das Infektionsgeschehen zurückzuverfolgen. In relativ kurzer Zeit wurden viele diagnostische Testverfahren und diagnostische Kits entwickelt, die den Nachweis von SARS-CoV-2-RNA, -Antigenen oder -Antikörpern ermöglichen. Dieser Review-Artikel gibt eine Übersicht über verfügbare diagnostische COVID-19-Tests, ihre Prinzipien und Einsatzmöglichkeiten

    Kaposi's sarcoma-associated herpesvirus infection of endothelial cells inhibits neutrophil recruitment through an interleukin-6-dependent mechanism: a new paradigm for viral immune evasion.

    No full text
    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), an endothelial cell (EC) neoplasm characterized by dysregulated angiogenesis and inflammation. KSHV infection of EC causes production of proinflammatory mediators, regarded as possible initiators of the substantial mononuclear leukocyte recruitment seen in KS. Conversely, KSHV immune evasion strategies exist, such as degradation of EC leukocyte adhesion receptors by viral proteins. Here, we report the effects of KSHV infection of primary EC on recruitment of flowing leukocytes. Infection did not initiate adhesion of any leukocyte subset per se. However, on cytokine-stimulated EC, KSHV specifically inhibited neutrophil, but not PBL or monocyte, transmigration, an observation consistent with the inflammatory cell profile found in KS lesions in vivo. This inhibition could be recapitulated on uninfected EC using supernatant from infected cultures. These supernatants contained elevated levels of human interleukin 6 (hIL-6), and both the KSHV- and the supernatant-induced inhibitions of neutrophil transmigration were abrogated in the presence of a hIL-6 neutralizing antibody. Furthermore, preconditioning of EC with hIL-6 mimicked the effect of KSHV. Using RNA interference (RNAi), we show that upregulation of suppressor of cytokine signaling 3 (SOCS3) was necessary for this effect of hIL-6. These studies reveal a novel paracrine mode of KSHV immune evasion, resulting in reduced recruitment of neutrophils, a cell type whose antiviral and antitumor roles are becoming increasingly appreciated. Moreover, the findings have implications for our understanding of the contribution of hIL-6 to the pathogenesis of other inflammatory disorders and tumors in which this cytokine is abundant

    Mother-to-child transmission of human herpesvirus-8 in South Africa

    No full text
    To investigate transmission of human herpesvirus (HHV)-8,2546 mother-child pairs were recruited from rural clinics in South Africa and were tested for antibodies against lytic and latent HHV-8 antigens. The prevalence of antibodies in children increased with increasing maternal antibody titer (lytic, chi(1)(2) and 26 and P50,000 copies/mL) in saliva (odds ratio, 2.6; 95% confidence interval, 1.1-6.2). The presence of HHV-8 DNA in maternal saliva was unrelated to latent antibodies in children. Saliva could be a route of transmission of HHV-8 from person to person, although other routes cannot be ruled out

    Interferon regulatory factor-1 protects from fatal neurotropic infection with vesicular stomatitis virus by specific inhibition of viral replication in neurons.

    Get PDF
    The innate immune system protects cells against invading viral pathogens by the auto- and paracrine action of type I interferon (IFN). In addition, the interferon regulatory factor (IRF)-1 can induce alternative intrinsic antiviral responses. Although both, type I IFN and IRF-1 mediate their antiviral action by inducing overlapping subsets of IFN stimulated genes, the functional role of this alternative antiviral action of IRF-1 in context of viral infections in vivo remains unknown. Here, we report that IRF-1 is essential to counteract the neuropathology of vesicular stomatitis virus (VSV). IFN- and IRF-1-dependent antiviral responses act sequentially to create a layered antiviral protection program against VSV infections. Upon intranasal infection, VSV is cleared in the presence or absence of IRF-1 in peripheral organs, but IRF-1-/- mice continue to propagate the virus in the brain and succumb. Although rapid IFN induction leads to a decline in VSV titers early on, viral replication is re-enforced in the brains of IRF-1-/- mice. While IFN provides short-term protection, IRF-1 is induced with delayed kinetics and controls viral replication at later stages of infection. IRF-1 has no influence on viral entry but inhibits viral replication in neurons and viral spread through the CNS, which leads to fatal inflammatory responses in the CNS. These data support a temporal, non-redundant antiviral function of type I IFN and IRF-1, the latter playing a crucial role in late time points of VSV infection in the brain
    corecore