9 research outputs found

    Antimicrobial peptide capsids of de novo design

    Get PDF
    The spread of bacterial resistance to antibiotics poses the need for antimicrobial discovery. With traditional search paradigms being exhausted, approaches that are altogether different from antibiotics may offer promising and creative solutions. Here, we introduce a de novo peptide topology that-by emulating the virus architecture-assembles into discrete antimicrobial capsids. Using the combination of high-resolution and real-time imaging, we demonstrate that these artificial capsids assemble as 20-nm hollow shells that attack bacterial membranes and upon landing on phospholipid bilayers instantaneously (seconds) convert into rapidly expanding pores causing membrane lysis (minutes). The designed capsids show broad antimicrobial activities, thus executing one primary function-they destroy bacteria on contact

    Structurally plastic peptide capsules for synthetic antimicrobial viruses

    Get PDF
    A conceptual design for artificial antimicrobial viruses is described. The design emulates viral assembly and function to create self-assembling peptide capsules that promote efficient gene delivery and silencing in mammalian cells. Unlike viruses, however, the capsules are antimicrobial, which allows them to exhibit a dual biological function: gene transport and antimicrobial activity. Unlike other antimicrobials, the capsules act as pre-concentrated antimicrobial agents that elicit rapid and localised membrane-disrupting responses by converting into individual pores at their precise landing positions on membranes. The concept holds promise for engineering virus-like scaffolds with biologically tuneable properties

    Tuneable poration : host defense peptides as sequence probes for antimicrobial mechanisms

    Get PDF
    The spread of antimicrobial resistance stimulates discovery strategies that place emphasis on mechanisms circumventing the drawbacks of traditional antibiotics and on agents that hit multiple targets. Host defense peptides (HDPs) are promising candidates in this regard. Here we demonstrate that a given HDP sequence intrinsically encodes for tuneable mechanisms of membrane disruption. Using an archetypal HDP (cecropin B) we show that subtle structural alterations convert antimicrobial mechanisms from native carpet-like scenarios to poration and non-porating membrane exfoliation. Such distinct mechanisms, studied using low- and high-resolution spectroscopy, nanoscale imaging and molecular dynamics simulations, all maintain strong antimicrobial effects, albeit with diminished activity against pathogens resistant to HDPs. The strategy offers an effective search paradigm for the sequence probing of discrete antimicrobial mechanisms within a single HDP

    The ASOS Surgical Risk Calculator: development and validation of a tool for identifying African surgical patients at risk of severe postoperative complications

    No full text
    Background: The African Surgical Outcomes Study (ASOS) showed that surgical patients in Africa have a mortality twice the global average. Existing risk assessment tools are not valid for use in this population because the pattern of risk for poor outcomes differs from high-income countries. The objective of this study was to derive and validate a simple, preoperative risk stratification tool to identify African surgical patients at risk for in-hospital postoperative mortality and severe complications. Methods: ASOS was a 7-day prospective cohort study of adult patients undergoing surgery in Africa. The ASOS Surgical Risk Calculator was constructed with a multivariable logistic regression model for the outcome of in-hospital mortality and severe postoperative complications. The following preoperative risk factors were entered into the model; age, sex, smoking status, ASA physical status, preoperative chronic comorbid conditions, indication for surgery, urgency, severity, and type of surgery. Results: The model was derived from 8799 patients from 168 African hospitals. The composite outcome of severe postoperative complications and death occurred in 423/8799 (4.8%) patients. The ASOS Surgical Risk Calculator includes the following risk factors: age, ASA physical status, indication for surgery, urgency, severity, and type of surgery. The model showed good discrimination with an area under the receiver operating characteristic curve of 0.805 and good calibration with c-statistic corrected for optimism of 0.784. Conclusions: This simple preoperative risk calculator could be used to identify high-risk surgical patients in African hospitals and facilitate increased postoperative surveillance. © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.Medical Research Council of South Africa gran

    Maternal and neonatal outcomes after caesarean delivery in the African Surgical Outcomes Study: a 7-day prospective observational cohort study.

    Get PDF
    BACKGROUND: Maternal and neonatal mortality is high in Africa, but few large, prospective studies have been done to investigate the risk factors associated with these poor maternal and neonatal outcomes. METHODS: A 7-day, international, prospective, observational cohort study was done in patients having caesarean delivery in 183 hospitals across 22 countries in Africa. The inclusion criteria were all consecutive patients (aged ≥18 years) admitted to participating centres having elective and non-elective caesarean delivery during the 7-day study cohort period. To ensure a representative sample, each hospital had to provide data for 90% of the eligible patients during the recruitment week. The primary outcome was in-hospital maternal mortality and complications, which were assessed by local investigators. The study was registered on the South African National Health Research Database, number KZ_2015RP7_22, and on ClinicalTrials.gov, number NCT03044899. FINDINGS: Between February, 2016, and May, 2016, 3792 patients were recruited from hospitals across Africa. 3685 were included in the postoperative complications analysis (107 missing data) and 3684 were included in the maternal mortality analysis (108 missing data). These hospitals had a combined number of specialist surgeons, obstetricians, and anaesthetists totalling 0·7 per 100 000 population (IQR 0·2-2·0). Maternal mortality was 20 (0·5%) of 3684 patients (95% CI 0·3-0·8). Complications occurred in 633 (17·4%) of 3636 mothers (16·2-18·6), which were predominantly severe intraoperative and postoperative bleeding (136 [3·8%] of 3612 mothers). Maternal mortality was independently associated with a preoperative presentation of placenta praevia, placental abruption, ruptured uterus, antepartum haemorrhage (odds ratio 4·47 [95% CI 1·46-13·65]), and perioperative severe obstetric haemorrhage (5·87 [1·99-17·34]) or anaesthesia complications (11·47 (1·20-109·20]). Neonatal mortality was 153 (4·4%) of 3506 infants (95% CI 3·7-5·0). INTERPRETATION: Maternal mortality after caesarean delivery in Africa is 50 times higher than that of high-income countries and is driven by peripartum haemorrhage and anaesthesia complications. Neonatal mortality is double the global average. Early identification and appropriate management of mothers at risk of peripartum haemorrhage might improve maternal and neonatal outcomes in Africa. FUNDING: Medical Research Council of South Africa.Medical Research Council of South Africa

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore