149 research outputs found

    Downward continued multichannel seismic refraction analysis of Atlantis Massif oceanic core complex, 30°N, Mid-Atlantic Ridge

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q0AG07, doi:10.1029/2012GC004059.Detailed seismic refraction results show striking lateral and vertical variability of velocity structure within the Atlantis Massif oceanic core complex (OCC), contrasting notably with its conjugate ridge flank. Multichannel seismic (MCS) data are downward continued using the Synthetic On Bottom Experiment (SOBE) method, providing unprecedented detail in tomographic models of the P-wave velocity structure to subseafloor depths of up to 1.5 km. Velocities can vary up to 3 km/s over several hundred meters and unusually high velocities (~5 km/s) are found immediately beneath the seafloor in key regions. Correlation with in situ and dredged rock samples, video and records from submersible dives, and a 1.415 km drill core, allow us to infer dominant lithologies. A high velocity body(ies) found to shoal near to the seafloor in multiple locations is interpreted as gabbro and is displaced along isochrons within the OCC, indicating a propagating magmatic source as the origin for this pluton(s). The western two-thirds of the Southern Ridge is capped in serpentinite that may extend nearly to the base of our ray coverage. The distribution of inferred serpentinite indicates that the gabbroic pluton(s) was emplaced into a dominantly peridotitic host rock. Presumably the mantle host rock was later altered via seawater penetration along the detachment zone, which controlled development of the OCC. The asymmetric distribution of seismic velocities and morphology of Atlantis Massif are consistent with a detachment fault with a component of dip to the southeast. The lowest velocities observed atop the eastern Central Dome and conjugate crust are most likely volcanics. Here, an updated model of the magmatic and extensional faulting processes at Atlantis Massif is deduced from the seismic results, contributing more generally to understanding the processes controlling the formation of heterogeneous lithosphere at slow-rate spreading centers.NSF support was provided via grant OCE-0927442.2012-11-1

    Farallon slab detachment and deformation of the Magdalena Shelf, southern Baja California

    Get PDF
    Subduction of the Farallon plate beneath northwestern Mexico stalled by ~12 Ma when the Pacific-Farallon spreading-ridge approached the subduction zone. Coupling between remnant slab and the overriding North American plate played an important role in the capture of the Baja California (BC) microplate by the Pacific Plate. Active-source seismic reflection and wide-angle seismic refraction profiles across southwestern BC (~24.5 degrees N) are used to image the extent of remnant slab and study its impact on the overriding plate. We infer that the hot, buoyant slab detached ~40 km landward of the fossil trench. Isostatic rebound following slab detachment uplifted the margin and exposed the Magdalena Shelf to wave-base erosion. Subsequent cooling, subsidence and transtensional opening along the shelf (starting ~8 Ma) starved the fossil trench of terrigenous sediment input. Slab detachment and the resultant rebound of the margin provide a mechanism for rapid uplift and exhumation of forearc subduction complexes

    Late Quaternary Faulting History of the Carrizal and Related Faults, La Paz Region, Baja California Sur, Mexico

    Get PDF
    The southwest margin of the Gulf of California has an array of active normal faults despite this being an oblique-divergent plate boundary with spreading centers that localized deformation along the plate boundary 2–3 million years ago. The Carrizal and Centenario faults form the western border fault of the Gulf of California marginal fault system within and south of La Paz Bay, and ∼20–30 km west of the capital city of La Paz, Baja California Sur, Mexico. Geologic and geomorphic mapping, optically stimulated luminescence (OSL) geochronology, and paleoseismic investigations onshore, compressed high-intensity radar pulse (CHIRP) profiling offshore, and analysis of uplifted marine terraces in the footwall of the offshore Carrizal fault provide some of the first numerical and geometrical constraints on late Pleistocene–Holocene faulting along the Carrizal fault. The onshore Carrizal fault has ruptured with up to ∼1–2 m of vertical displacement per event, likely producing ∼M 6.3–6.9 earthquakes, and at least two to three surface rupturing earthquakes have occurred since 22 ka. Onshore paleoseismic excavations and uplifted marine terraces on the western side of La Paz Bay both suggest offset rates of 0.1–0.2 mm/yr, with a footwall uplift rate of 0.13 mm/yr since 128 ka, and an approximately constant rate since marine oxygen-isotope stage (MIS) 11 terraces (420 ka). A CHIRP survey identified underwater fault scarps with heights ranging from 21 to 86 m on the Carrizal fault in La Paz Bay and from 3 to 5 m along the Centenario fault. The offshore Carrizal fault lies 8–10 km east of the western edge of La Paz Bay, forming a right step from the onshore Carrizal fault. The offshore Carrizal fault is the oldest fault of the fault system, and the fault likely grew in the latest Miocene to Pliocene in a complex way to the south toward the onshore Centenario and Carrizal faults. When the Alarcon spreading center started its modern rates at 2.4 Ma, the Carrizal fault likely slowed to the 0.1–0.2 mm/yr rates of the late Quaternary determined in this study

    Continental rupture and the creation of new crust in the Salton Trough rift, Southern California and northern Mexico: Results from the Salton Seismic Imaging Project

    Get PDF
    A refraction and wide-angle reflection seismic profile along the axis of the Salton Trough, California and Mexico, was analyzed to constrain crustal and upper mantle seismic velocity structure during active continental rifting. From the northern Salton Sea to the southern Imperial Valley, the crust is 17–18 km thick and approximately one-dimensional. The transition at depth from Colorado River sediment to underlying crystalline rock is gradual and is not a depositional surface. The crystalline rock from ~3 to ~8 km depth is interpreted as sediment metamorphosed by high heat flow. Deeper felsic crystalline rock could be stretched preexisting crust or higher-grade metamorphosed sediment. The lower crust below ~12 km depth is interpreted to be gabbro emplaced by rift-related magmatic intrusion by underplating. Low upper mantle velocity indicates high temperature and partial melting. Under the Coachella Valley, sediment thins to the north and the underlying crystalline rock is interpreted as granitic basement. Mafic rock does not exist at 12–18 km depth as it does to the south, and a weak reflection suggests Moho at ~28 km depth. Structure in adjacent Mexico has slower midcrustal velocity, and rocks with mantle velocity must be much deeper than in the Imperial Valley. Slower velocity and thicker crust in the Coachella and Mexicali valleys define the rift zone between them to be >100 km wide in the direction of plate motion. North American lithosphere in the central Salton Trough has been rifted apart and is being replaced by new crust created by magmatism, sedimentation, and metamorphism

    Large-Diameter Trees Dominate Snag and Surface Biomass Following Reintroduced Fire

    Get PDF
    The reintroduction of fire to landscapes where it was once common is considered a priority to restore historical forest dynamics, including reducing tree density and decreasing levels of woody biomass on the forest floor. However, reintroducing fire causes tree mortality that can have unintended ecological outcomes related to woody biomass, with potential impacts to fuel accumulation, carbon sequestration, subsequent fire severity, and forest management. In this study, we examine the interplay between fire and carbon dynamics by asking how reintroduced fire impacts fuel accumulation, carbon sequestration, and subsequent fire severity potential. Beginning pre-fire, and continuing 6 years post-fire, we tracked all live, dead, and fallen trees ≥ 1 cm in diameter and mapped all pieces of deadwood (downed woody debris) originating from tree boles ≥ 10 cm diameter and ≥ 1 m in length in 25.6 ha of an Abies concolor/Pinus lambertiana forest in the central Sierra Nevada, California, USA. We also tracked surface fuels along 2240 m of planar transects pre-fire, immediately post-fire, and 6 years post-fire. Six years after moderate-severity fire, deadwood ≥ 10 cm diameter was 73 Mg ha−1, comprised of 32 Mg ha−1 that persisted through fire and 41 Mg ha−1 of newly fallen wood (compared to 72 Mg ha−1 pre-fire). Woody surface fuel loading was spatially heterogeneous, with mass varying almost four orders of magnitude at the scale of 20 m × 20 m quadrats (minimum, 0.1 Mg ha−1; mean, 73 Mg ha−1; maximum, 497 Mg ha−1). Wood from large-diameter trees (≥ 60 cm diameter) comprised 57% of surface fuel in 2019, but was 75% of snag biomass, indicating high contributions to current and future fuel loading. Reintroduction of fire does not consume all large-diameter fuel and generates high levels of surface fuels ≥ 10 cm diameter within 6 years. Repeated fires are needed to reduce surface fuel loading

    Anatomy of an active submarine volcano

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Geological Society of America for personal use, not for redistribution. The definitive version was published in Geology 42 (2014): 655-658, doi:10.1130/G35629.1.Most of the magma erupted at mid-ocean ridges is stored in a mid-crustal melt lens that lies at the boundary between sheeted dikes and gabbros. Nevertheless, images of the magma pathways linking this melt lens to the overlying eruption site have remained elusive. Here, we have used seismic methods to image the thickest magma reservoir observed beneath any spreading center to date, which is principally attributed to the juxtaposition of the Juan de Fuca Ridge with the Cobb hotspot. Our results reveal a complex melt body beneath the summit caldera, which is ~14 km long, 3 km wide and up to 1 km thick. The estimated volume of the reservoir is 18–30 km3, more than two orders of magnitude greater than the erupted magma volumes of the 1998 and 2011 eruptions. Our images show a network of sub-horizontal to shallow dipping (<30°) features that we interpret as pathways facilitating melt transport from the magma reservoir to the eruption sites.This research was funded through a National Science Foundation grant, OCE- 0002600, and additionally supported through the Cecil H. and Ida M. Green Foundation at the Scripps Institution of Oceanography.2015-06-0

    Variable crustal structure along the Juan de Fuca Ridge : influence of on-axis hot spots and absolute plate motions

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q08001, doi:10.1029/2007GC001922.Multichannel seismic and bathymetric data from the Juan de Fuca Ridge (JDFR) provide constraints on axial and ridge flank structure for the past 4–8 Ma within three spreading corridors crossing Cleft, Northern Symmetric, and Endeavour segments. Along-axis data reveal south-to-north gradients in seafloor relief and presence and depth of the crustal magma lens, which indicate a warmer axial regime to the south, both on a regional scale and within individual segments. For young crust, cross-axis lines reveal differences between segments in Moho two-way traveltimes of 200–300 ms which indicate 0.5–1 km thicker crust at Endeavour and Cleft compared to Northern Symmetric. Moho traveltime anomalies extend beyond the 5–15 km wide axial high and coincide with distinct plateaus, 32 and 40 km wide and 200–400 m high, found at both segments. On older crust, Moho traveltimes are similar for all three segments (∼2100 ± 100 ms), indicating little difference in average crustal production prior to ∼0.6 and 0.7 Ma. The presence of broad axis-centered bathymetric plateau with thickened crust at Cleft and Endeavour segments is attributed to recent initiation of ridge axis-centered melt anomalies associated with the Cobb hot spot and the Heckle melt anomaly. Increased melt supply at Cleft segment upon initiation of Axial Volcano and southward propagation of Endeavour segment during the Brunhes point to rapid southward directed along-axis channeling of melt anomalies linked to these hot spots. Preferential southward flow of the Cobb and Heckle melt anomalies and the regional-scale south-to-north gradients in ridge structure along the JDFR may reflect influence of the northwesterly absolute motion of the ridge axis on subaxial melt distribution.This work was supported by U.S. National Science Foundation grants OCE00-02488 to S.M.C., OCE06-48303 to S.M.C. and M.R.N., OCE-0648923 to J.P.C., and OCE00-02600 to G.M.K. and A.J.H

    Upper crustal evolution across the Juan de Fuca ridge flanks

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09006, doi:10.1029/2008GC002085.Recent P wave velocity compilations of the oceanic crust indicate that the velocity of the uppermost layer 2A doubles or reaches ∼4.3 km/s found in mature crust in <10 Ma after crustal formation. This velocity change is commonly attributed to precipitation of low-temperature alteration minerals within the extrusive rocks associated with ridge-flank hydrothermal circulation. Sediment blanketing, acting as a thermal insulator, has been proposed to further accelerate layer 2A evolution by enhancing mineral precipitation. We carried out 1-D traveltime modeling on common midpoint supergathers from our 2002 Juan de Fuca ridge multichannel seismic data to determine upper crustal structure at ∼3 km intervals along 300 km long transects crossing the Endeavor, Northern Symmetric, and Cleft ridge segments. Our results show a regional correlation between upper crustal velocity and crustal age. The measured velocity increase with crustal age is not uniform across the investigated ridge flanks. For the ridge flanks blanketed with a sealing sedimentary cover, the velocity increase is double that observed on the sparsely and discontinuously sedimented flanks (∼60% increase versus ∼28%) over the same crustal age range of 5–9 Ma. Extrapolation of velocity-age gradients indicates that layer 2A velocity reaches 4.3 km/s by ∼8 Ma on the sediment blanketed flanks compared to ∼16 Ma on the flanks with thin and discontinuous sediment cover. The computed thickness gradients show that layer 2A does not thin and disappear in the Juan de Fuca region with increasing crustal age or sediment blanketing but persists as a relatively low seismic velocity layer capping the deeper oceanic crust. However, layer 2A on the fully sedimented ridge-flank sections is on average thinner than on the sparsely and discontinuously sedimented flanks (330 ± 80 versus 430 ± 80 m). The change in thickness occurs over a 10–20 km distance coincident with the onset of sediment burial. Our results also suggest that propagator wakes can have atypical layer 2A thickness and velocity. Impact of propagator wakes is evident in the chemical signature of the fluids sampled by ODP drill holes along the east Endeavor transect, providing further indication that these crustal discontinuities may be sites of localized fluid flow and alteration.This research was supported by National Science Foundation grants OCE-00-02488, OCE-00-02551, and OCE-00- 02600
    • …
    corecore