114 research outputs found

    Interactions of Reduced Deforestation and the Carbon Market: The Role of Market Regulations and Future Commitments

    Get PDF
    Reducing emissions from deforestation and degradation (REDD) has been proposed as a potentially inexpensive and plentiful source of emission abatement to supplement other longterm climate policies. However, critics doubt that REDD credits are environmentally equivalent to domestic emission reductions, and suggest an excess supply may disrupt carbon markets. In this context, we investigate the economic implications of emissions market regulations and future emissions reduction commitments, as well as uncertainties in REDD credit supply. Numerical simulations with a multi-country equilibrium model of the global emissions market show unrestricted exchange of REDD units reduces the international carbon price by half and cuts Annex I compliance costs by roughly one third. Restricting supply or demand of REDD credits reduces price impacts, but comes at the cost of economic efficiency. Alternatively, Annex I reduction commitments could be increased by almost two thirds at constant carbon prices. While REDD provides large economic benefits for tropical rainforest regions, any REDD policy scenario also reduces wealth transfers to traditional CDM host countries through increased competition on the supply-side of the carbon market. --Climate Change,Kyoto Protocol,Emissions Trading,Deforestation,REDD

    Interactions of Reduced Deforestation and the Carbon Market : the Role of Market Regulations and Future Commitments

    Full text link
    Reducing emissions from deforestation and degradation (REDD) has been proposed as a potentially inexpensive and plentiful source of emission abatement to supplement other longterm climate policies. However, critics doubt that REDD credits are environmentally equivalent to domestic emission reductions, and suggest an excess supply may disrupt carbon markets. In this context, we investigate the economic implications of emissions market regulations and future emissions reduction commitments, as well as uncertainties in REDD credit supply. Numerical simulations with a multi-country equilibrium model of the global emissions market show unrestricted exchange of REDD units reduces the international carbon price by half and cuts Annex I compliance costs by roughly one third. Restricting supply or demand of REDD credits reduces price impacts, but comes at the cost of economic efficiency. Alternatively, Annex I reduction commitments could be increased by almost two thirds at constant carbon prices. While REDD provides large economic benefits for tropical rainforest regions, any REDD policy scenario also reduces wealth transfers to traditional CDM host countries through increased competition on the supply-side of the carbon market

    Failure to respond to food resource decline has catastrophic consequences for koalas in a high-density population in Southern Australia

    Full text link
    Understanding the ability of koalas to respond to changes in their environment is critical for conservation of the species and their habitat. We monitored the behavioural response of koalas to declining food resources in manna gum (Eucalyptus viminalis) woodland at Cape Otway, Victoria, Australia, from September 2011 to November 2013. Over this period, koala population density increased from 10.1 to 18.4 koalas.ha-1. As a result of the high browsing pressure of this population, manna gum canopy condition declined with 71.4% manna gum being completely or highly defoliated in September 2013. Despite declining food resources, radio collared koalas (N = 30) exhibited high fidelity to small ranges (0.4-1.2 ha). When trees became severely defoliated in September 2013, koalas moved relatively short distances from their former ranges (mean predicted change in range centroid = 144 m) and remained in areas of 0.9 to 1.0 ha. This was despite the high connectivity of most manna gum woodland, and close proximity of the study site (< 3 km) to the contiguous mixed forest of the Great Otway National Park. Limited movement had catastrophic consequences for koalas with 71% (15/21) of radio collared koalas dying from starvation or being euthanased due to their poor condition between September and November 2013

    Application of next-generation sequencing technologies in virology

    Get PDF
    The progress of science is punctuated by the advent of revolutionary technologies that provide new ways and scales to formulate scientific questions and advance knowledge. Following on from electron microscopy, cell culture and PCR, next-generation sequencing is one of these methodologies that is now changing the way that we understand viruses, particularly in the areas of genome sequencing, evolution, ecology, discovery and transcriptomics. Possibilities for these methodologies are only limited by our scientific imagination and, to some extent, by their cost, which has restricted their use to relatively small numbers of samples. Challenges remain, including the storage and analysis of the large amounts of data generated. As the chemistries employed mature, costs will decrease. In addition, improved methods for analysis will become available, opening yet further applications in virology including routine diagnostic work on individuals, and new understanding of the interaction between viral and host transcriptomes. An exciting era of viral exploration has begun, and will set us new challenges to understand the role of newly discovered viral diversity in both disease and health

    Identifying Visible Tissue in Intraoperative Ultrasound Images during Brain Surgery: A Method and Application

    Full text link
    Intraoperative ultrasound scanning is a demanding visuotactile task. It requires operators to simultaneously localise the ultrasound perspective and manually perform slight adjustments to the pose of the probe, making sure not to apply excessive force or breaking contact with the tissue, whilst also characterising the visible tissue. In this paper, we propose a method for the identification of the visible tissue, which enables the analysis of ultrasound probe and tissue contact via the detection of acoustic shadow and construction of confidence maps of the perceptual salience. Detailed validation with both in vivo and phantom data is performed. First, we show that our technique is capable of achieving state of the art acoustic shadow scan line classification - with an average binary classification accuracy on unseen data of 0.87. Second, we show that our framework for constructing confidence maps is able to produce an ideal response to a probe's pose that is being oriented in and out of optimality - achieving an average RMSE across five scans of 0.174. The performance evaluation justifies the potential clinical value of the method which can be used both to assist clinical training and optimise robot-assisted ultrasound tissue scanning

    3D Printed Strontium and Zinc Doped Hydroxyapatite Loaded PEEK for Craniomaxillofacial Implants

    Get PDF
    In this study, Strontium (Sr) and Zinc (Zn) doped-HA nanoparticles were synthesized and incorporated into polyetheretherketone (PEEK) up to 30 wt.% and processed by a novel approach i.e., fused deposition modelling (FDM) 3D printing for the production of patient specific cranial implants with improved bioactivity and the required mechanical performance. Filaments were produced via extrusion and subsequently 3D-printed using FDM. To further improve the bioactivity of the 3D-printed parts, the samples were dip-coated in polyethylene glycol-DOPA (PEG-DOPA) solution. The printing quality was influenced by filler loading, but was not significantly influenced by the nature of doped-HA. Hence, the printing conditions were optimized for each sample. Micro-CT and Scanning Electron Microscopy (SEM) showed a uniform distribution of bioceramic particles in PEEK. Although agglomeration of particles increased with increase in filler loadings. Differential Scanning Calorimetry (DSC) showed that the melting point and crystallinity of PEEK increased with an increase in doped-HA loading from 343 °C to 355 °C and 27.7% to 34.6%, respectively. Apatite formation was confirmed on the 3D-printed samples after immersion in simulated body fluid (SBF) for 7, 14 and 28 days via SEM, X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The tensile strength and impact strength decreased from 75 MPa to 51 MPa and 14 kJ/m(2) to 4 kJ/m(2), respectively, while Young’s modulus increased with increasing doped-HA content from 2.8 GPa to 4.2 GPa. However, the tensile strengths of composites remained in the range of human cortical bone i.e., ≄50 MPa. In addition, there was a slight increase in mechanical strength after 28 days immersion which was attributed to apatite formation. Water contact angle showed that the hydrophilicity of the samples improved after coating the 3D-printed samples with PEG-DOPA. Hence, based on the results, the 3D-printed PEEK nanocomposites with 20 wt.% doped-HA is selected as the best candidate for the 3D-printing of craniomaxillofacial implants

    Adenosine receptor expression and function in rat striatal cholinergic interneurons

    Get PDF
    1. Cholinergic neurons were identified in rat striatal slices by their size, membrane properties, sensitivity to the NK(1) receptor agonist (Sar(9), Met(O(2))(11)) Substance P, and expression of choline acetyltransferase mRNA. A(1) receptor mRNA was detected in 60% of the neurons analysed, and A(2A) receptor mRNA in 67% (n=15). 2. The A(1) receptor agonist R-N(6)-(2-phenylisopropyl)adenosine (R-PIA) hyperpolarized cholinergic neurons in a concentration dependent manner sensitive to the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 nM). 3. In dual stimulus experiments, the A(2A) receptor antagonist 8-(3-chlorostyryl)caffeine (CSC, 500 nM) decreased release of [(3)H]-acetylcholine from striatal slices (S2/S1 0.78±0.07 versus 0.95±0.05 in control), as did adenosine deaminase (S2/S1 ratio 0.69±0.05), whereas the A(1) receptor antagonist DPCPX (100 nM) had no effect (S2/S1 1.05±0.14). 4. In the presence of adenosine deaminase the adenosine A(2A) receptor agonist 2-p-((carboxyethyl)phenylethylamino)-5â€Č-N-ethylcarboxamidoadenosine (CGS21680, 10 nM) increased release (S2/S1 ratio 1.03±0.05 versus 0.88±0.05 in control), an effect blocked by the antagonist CSC (500 nM, S2/S1 0.68±0.05, versus 0.73±0.08 with CSC alone). The combined superfusion of bicuculline (10 ΌM), saclofen (1 ΌM) and naloxone (10 ΌM) had no effect on the stimulation by CGS21680 (S2/S1 ratio 0.99±0.04). 5. The A(1) receptor agonist R-PIA (100 nM) inhibited the release of [(3)H]-acetylcholine (S2/S1 ratio 0.70±0.03), an effect blocked by DPCPX (S2/S1 ratio 1.06±0.07). 6. It is concluded that both A(1) and A(2A) receptors are expressed on striatal cholinergic neurons where they are functionally active

    Catalytic enantioselective nucleophilic desymmetrization of phosphonate esters

    Get PDF
    Molecules that contain a stereogenic phosphorus atom are crucial to medicine, agrochemistry and catalysis. While methods are available for the selective construction of various chiral organophosphorus compounds, catalytic enantioselective approaches for their synthesis are far less common. Given the vastness of possible substituent combinations around a phosphorus atom, protocols for their preparation should also be divergent, providing facile access not only to one but to many classes of phosphorus compounds. Here we introduce a catalytic and enantioselective strategy for the preparation of an enantioenriched phosphorus(V) centre that can be diversified enantiospecifically to a wide range of biologically relevant phosphorus(V) compounds. The process, which involves an enantioselective nucleophilic substitution catalysed by a superbasic bifunctional iminophosphorane catalyst, can accommodate a wide range of carbon substituents at phosphorus. The resulting stable, yet versatile, synthetic intermediates can be combined with a multitude of medicinally relevant O-, N- and S-based nucleophiles

    Risk Assessment of Impacts of Climate Change for Key Marine Species in South Eastern Australia. Part 2: species profiles

    Get PDF
    [Extract] Blacklip and greenlip abalone form the basis of valuable fisheries in Tasmania, Victoria, South Australia and New South Wales (Figure 1.1). The Tasmanian abalone fishery is the largest wild abalone fishery in the world, producing more than 25% of the global catch (Miller et al. 2009). In 2008, the fishery had a gross landed value of $ 90 million. Blacklip abalone (BA), Haliotis rubra, is the predominant species harvested in Tasmania with 2461 t landed in 2008, compared to only 122 t of greenlip abalone (GA), H. laevigata (Tarbath and Gardner 2009). Since 2003, the BA fishery has been divided into five zones: Eastern, Western, Northern, Bass Strait, and Central West (Tarbath and Gardner 2009). The GA fishery is restricted to the north of the state and is managed by regions and separately from the BA fishery. In Victoria, approximately 1,200 t was landed in 2007/08, however, the current TAC is 774 t (2010/11). Catches are dominated by BA (96%) and the fishery is structured into three zones: Western, Central and Eastern. The South Australian fishery harvests approximately 880 t of abalone each year, about 60% of this is BA with the remainder comprising GA. Like Victoria, the South Australian fishery is divided into the Southern, Central and Western zones. Current annual catches in NSW were less than 75 t in 2009/10 and consist exclusively of BA. The commercial fisheries are assessed on a variable combination of commercial catch, effort and size-composition data, fishery-independent surveys and length-structured models. In Tasmania, 105,500 abalone were taken by recreational fishers in 2006/07, weighing an estimated 49 t. The number of recreational licenses has tripled since 1995, with 12,500 recreational diving licenses issued in 2007/08 (Lyle 2008). Recreational catches in SA are small, probably less than 1% of the TACC (Jones, 2009)
    • 

    corecore